Marine Technology Reporter Blogs - depth
Subsea Instrumentation: CTD Devices
CTD stands for conductivity, temperature, and depth, and refers to a package of electronic instruments that measure these properties. A device called CTD Rosette is lowered into the water and down to the seafloor to measure the salinity, temperature, depth and concentration of particles in the water column. A CTD device’s primary function is to detect how the conductivity and temperature of the water column changes relative to depth. Conductivity is a measure of how well a solution conducts electricity. Conductivity is directly related to salinity, which is the concentration of salt and other inorganic compounds in seawater. Salinity is one of the most basic measurements used by ocean scientists.
Subsea Instrumentation: CTD Devices
CTD stands for conductivity, temperature, and depth, and refers to a package of electronic instruments that measure these properties. A device called CTD Rosette is lowered into the water and down to the seafloor to measure the salinity, temperature, depth and concentration of particles in the water column. A CTD device’s primary function is to detect how the conductivity and temperature of the water column changes relative to depth. Conductivity is a measure of how well a solution conducts electricity. Conductivity is directly related to salinity, which is the concentration of salt and other inorganic compounds in seawater. Salinity is one of the most basic measurements used by ocean scientists.
Subsea Instrumentation: CTD Devices
CTD stands for conductivity, temperature, and depth, and refers to a package of electronic instruments that measure these properties. A device called CTD Rosette is lowered into the water and down to the seafloor to measure the salinity, temperature, depth and concentration of particles in the water column. A CTD device’s primary function is to detect how the conductivity and temperature of the water column changes relative to depth. Conductivity is a measure of how well a solution conducts electricity. Conductivity is directly related to salinity, which is the concentration of salt and other inorganic compounds in seawater. Salinity is one of the most basic measurements used by ocean scientists.
Subsea Instrumentation: CTD Devices
CTD stands for conductivity, temperature, and depth, and refers to a package of electronic instruments that measure these properties. A device called CTD Rosette is lowered into the water and down to the seafloor to measure the salinity, temperature, depth and concentration of particles in the water column. A CTD device’s primary function is to detect how the conductivity and temperature of the water column changes relative to depth. Conductivity is a measure of how well a solution conducts electricity. Conductivity is directly related to salinity, which is the concentration of salt and other inorganic compounds in seawater. Salinity is one of the most basic measurements used by ocean scientists.
Subsea Instrumentation: CTD Devices
CTD stands for conductivity, temperature, and depth, and refers to a package of electronic instruments that measure these properties. A device called CTD Rosette is lowered into the water and down to the seafloor to measure the salinity, temperature, depth and concentration of particles in the water column. A CTD device’s primary function is to detect how the conductivity and temperature of the water column changes relative to depth. Conductivity is a measure of how well a solution conducts electricity. Conductivity is directly related to salinity, which is the concentration of salt and other inorganic compounds in seawater. Salinity is one of the most basic measurements used by ocean scientists.
Subsea Instrumentation: CTD Devices
CTD stands for conductivity, temperature, and depth, and refers to a package of electronic instruments that measure these properties. A device called CTD Rosette is lowered into the water and down to the seafloor to measure the salinity, temperature, depth and concentration of particles in the water column. A CTD device’s primary function is to detect how the conductivity and temperature of the water column changes relative to depth. Conductivity is a measure of how well a solution conducts electricity. Conductivity is directly related to salinity, which is the concentration of salt and other inorganic compounds in seawater. Salinity is one of the most basic measurements used by ocean scientists.
Subsea Instrumentation: CTD Devices
CTD stands for conductivity, temperature, and depth, and refers to a package of electronic instruments that measure these properties. A device called CTD Rosette is lowered into the water and down to the seafloor to measure the salinity, temperature, depth and concentration of particles in the water column. A CTD device’s primary function is to detect how the conductivity and temperature of the water column changes relative to depth. Conductivity is a measure of how well a solution conducts electricity. Conductivity is directly related to salinity, which is the concentration of salt and other inorganic compounds in seawater. Salinity is one of the most basic measurements used by ocean scientists.
Subsea Instrumentation: CTD Devices
CTD stands for conductivity, temperature, and depth, and refers to a package of electronic instruments that measure these properties. A device called CTD Rosette is lowered into the water and down to the seafloor to measure the salinity, temperature, depth and concentration of particles in the water column. A CTD device’s primary function is to detect how the conductivity and temperature of the water column changes relative to depth. Conductivity is a measure of how well a solution conducts electricity. Conductivity is directly related to salinity, which is the concentration of salt and other inorganic compounds in seawater. Salinity is one of the most basic measurements used by ocean scientists.
Subsea Instrumentation: CTD Devices
CTD stands for conductivity, temperature, and depth, and refers to a package of electronic instruments that measure these properties. A device called CTD Rosette is lowered into the water and down to the seafloor to measure the salinity, temperature, depth and concentration of particles in the water column. A CTD device’s primary function is to detect how the conductivity and temperature of the water column changes relative to depth. Conductivity is a measure of how well a solution conducts electricity. Conductivity is directly related to salinity, which is the concentration of salt and other inorganic compounds in seawater. Salinity is one of the most basic measurements used by ocean scientists.
Bluefin-21 AUV
Bluefin Robotics’ Bluefin-21 is a highly modular AUV able to carry multiple sensors and comprehensive payloads, while at the same time boasting a high-energy capacity that enables extended operations even at the greatest depths. The Bluefin-21 was designed to operate from various ships of opportunity worldwide and has a software package that is flexible, robust, customizable and user-friendly, while also having advanced autonomy and behaviors. Bluefin’s next generation behavior control system provides a highly flexible system for accomplishing the goals specified in a mission plan. This behavior control facilitates dynamic insertion, removal, and modification of mission elements during execution. This is a vital capability in the often uncertain and noisy environments that AUVs face.
RTM for Improved Salt Imaging
Reverse time migration (RTM) is a powerful imaging tool. It has the ability to account for rapid spatial variations in the velocity model and to utilize all wavefront information, producing superior images of the most complex structures. This is why RTM is frequently used to interpret salt structures in regions known to have complex salt geometries like the Gulf of Mexico. With the application of recent advancements such as Vector Offset Output and 3D angle gathers, the imaging capability of RTM is enhanced even further. RTM is a pre-stack two-way wave equation depth migration, recognized as being able to produce superior pre-salt images compared to other migration algorithms such as Kirchhoff, control beam migration (CBM) or one-way wave equation migration.
Subsea Instrumentation: CTD Devices
CTD stands for conductivity, temperature, and depth, and refers to a package of electronic instruments that measure these properties. A device called CTD Rosette is lowered into the water and down to the seafloor to measure the salinity, temperature, depth and concentration of particles in the water column. A CTD device’s primary function is to detect how the conductivity and temperature of the water column changes relative to depth. Conductivity is a measure of how well a solution conducts electricity. Conductivity is directly related to salinity, which is the concentration of salt and other inorganic compounds in seawater. Salinity is one of the most basic measurements used by ocean scientists.
Subsea Instrumentation: CTD Devices
CTD stands for conductivity, temperature, and depth, and refers to a package of electronic instruments that measure these properties. A device called CTD Rosette is lowered into the water and down to the seafloor to measure the salinity, temperature, depth and concentration of particles in the water column. A CTD device’s primary function is to detect how the conductivity and temperature of the water column changes relative to depth. Conductivity is a measure of how well a solution conducts electricity. Conductivity is directly related to salinity, which is the concentration of salt and other inorganic compounds in seawater. Salinity is one of the most basic measurements used by ocean scientists.
Subsea Instrumentation: CTD Devices
CTD stands for conductivity, temperature, and depth, and refers to a package of electronic instruments that measure these properties. A device called CTD Rosette is lowered into the water and down to the seafloor to measure the salinity, temperature, depth and concentration of particles in the water column. A CTD device’s primary function is to detect how the conductivity and temperature of the water column changes relative to depth. Conductivity is a measure of how well a solution conducts electricity. Conductivity is directly related to salinity, which is the concentration of salt and other inorganic compounds in seawater. Salinity is one of the most basic measurements used by ocean scientists.
Subsea Instrumentation: CTD Devices
CTD stands for conductivity, temperature, and depth, and refers to a package of electronic instruments that measure these properties. A device called CTD Rosette is lowered into the water and down to the seafloor to measure the salinity, temperature, depth and concentration of particles in the water column. A CTD device’s primary function is to detect how the conductivity and temperature of the water column changes relative to depth. Conductivity is a measure of how well a solution conducts electricity. Conductivity is directly related to salinity, which is the concentration of salt and other inorganic compounds in seawater. Salinity is one of the most basic measurements used by ocean scientists.
Subsea Instrumentation: CTD Devices
CTD stands for conductivity, temperature, and depth, and refers to a package of electronic instruments that measure these properties. A device called CTD Rosette is lowered into the water and down to the seafloor to measure the salinity, temperature, depth and concentration of particles in the water column. A CTD device’s primary function is to detect how the conductivity and temperature of the water column changes relative to depth. Conductivity is a measure of how well a solution conducts electricity. Conductivity is directly related to salinity, which is the concentration of salt and other inorganic compounds in seawater. Salinity is one of the most basic measurements used by ocean scientists.
Subsea Instrumentation: CTD Devices
CTD stands for conductivity, temperature, and depth, and refers to a package of electronic instruments that measure these properties. A device called CTD Rosette is lowered into the water and down to the seafloor to measure the salinity, temperature, depth and concentration of particles in the water column. A CTD device’s primary function is to detect how the conductivity and temperature of the water column changes relative to depth. Conductivity is a measure of how well a solution conducts electricity. Conductivity is directly related to salinity, which is the concentration of salt and other inorganic compounds in seawater. Salinity is one of the most basic measurements used by ocean scientists.
Subsea Instrumentation: CTD Devices
CTD stands for conductivity, temperature, and depth, and refers to a package of electronic instruments that measure these properties. A device called CTD Rosette is lowered into the water and down to the seafloor to measure the salinity, temperature, depth and concentration of particles in the water column. A CTD device’s primary function is to detect how the conductivity and temperature of the water column changes relative to depth. Conductivity is a measure of how well a solution conducts electricity. Conductivity is directly related to salinity, which is the concentration of salt and other inorganic compounds in seawater. Salinity is one of the most basic measurements used by ocean scientists.
Subsea Instrumentation: CTD Devices
CTD stands for conductivity, temperature, and depth, and refers to a package of electronic instruments that measure these properties. A device called CTD Rosette is lowered into the water and down to the seafloor to measure the salinity, temperature, depth and concentration of particles in the water column. A CTD device’s primary function is to detect how the conductivity and temperature of the water column changes relative to depth. Conductivity is a measure of how well a solution conducts electricity. Conductivity is directly related to salinity, which is the concentration of salt and other inorganic compounds in seawater. Salinity is one of the most basic measurements used by ocean scientists.