New Wave Media

August 18, 2015

Examining the Fate of Fukushima Contaminants

  • Researchers deployed time-series sediment traps 115 kilometers southeast of the nuclear power plant at depths of 500 meters and 1,000 meters. The two traps began collecting samples on July 19, 2011—130 days after the March 11 earthquake and tsunami—and were recovered and reset annually. (Makio Honda, Japan Agency for Marine-Earth Science and Technology)
  • WHOI marine chemist Ken Buesseler, pictured on a research vessel off the coast of Japan in 2013, has been tracking the spread of radionuclides released from Fukushima since 2011. In October, Buesseler and the research team will return to Japan to redeploy more sediment traps. (Photo courtesy of Ken Buesseler)
  • Researchers deployed time-series sediment traps 115 kilometers southeast of the nuclear power plant at depths of 500 meters and 1,000 meters. The two traps began collecting samples on July 19, 2011—130 days after the March 11 earthquake and tsunami—and were recovered and reset annually. (Makio Honda, Japan Agency for Marine-Earth Science and Technology) Researchers deployed time-series sediment traps 115 kilometers southeast of the nuclear power plant at depths of 500 meters and 1,000 meters. The two traps began collecting samples on July 19, 2011—130 days after the March 11 earthquake and tsunami—and were recovered and reset annually. (Makio Honda, Japan Agency for Marine-Earth Science and Technology)
  • WHOI marine chemist Ken Buesseler, pictured on a research vessel off the coast of Japan in 2013, has been tracking the spread of radionuclides released from Fukushima since 2011. In October, Buesseler and the research team will return to Japan to redeploy more sediment traps. (Photo courtesy of Ken Buesseler) WHOI marine chemist Ken Buesseler, pictured on a research vessel off the coast of Japan in 2013, has been tracking the spread of radionuclides released from Fukushima since 2011. In October, Buesseler and the research team will return to Japan to redeploy more sediment traps. (Photo courtesy of Ken Buesseler)
A fraction of buried, ocean sediment uncovered by typhoons, carried offshore by currents
 
An international research team reports results of a three-year study of sediment samples collected offshore from the Fukushima Daiichi Nuclear Power Plant in a new paper published August 18, 2015, in the American Chemical Society's journal, Environmental Science and Technology.
 
The research aids in understanding what happens to Fukushima contaminants after they are buried on the seafloor off coastal Japan.
 
Led by Ken Buesseler, a senior scientist and marine chemist at the Woods Hole Oceanographic Institution (WHOI), the team found that a small fraction of contaminated seafloor sediments off Fukushima are moved offshore by typhoons that resuspend radioactive particles in the water, which then travel laterally with southeasterly currents into the Pacific Ocean. 
 
"Cesium is one of the dominant radionuclides that was released in unprecedented amounts with contaminated water from Japan's Fukushima Daiichi nuclear power plant following the March 11, 2011, earthquake and tsunami," Buesseler said. "A little over 99 percent of it moved with the water offshore, but a very small fraction—less than one percent—ended up on the sea floor as buried sediment."
 
"We've been looking at the fate of that buried sediment on the continental shelf and tracking how much of that contaminated sediment gets offshore through re-suspension from the ocean bottom," he added.
 
The research team, which included colleagues from the Japan Agency for Marine-Earth Science and Technology and the Japan Atomic Energy Agency, analyzed three years’ worth of data collected from time-series sediment traps.
 
Researchers deployed the preprogrammed, funnel-shaped instruments 115 kilometers southeast of the nuclear power plant at depths of 500 meters and 1,000 meters. The two traps began collecting samples on July 19, 2011—130 days after the March 11 earthquake and tsunami—and were recovered and reset annually.
 
After analyzing the data, researchers found radiocesium from the Fukushima Daiichi Nuclear Power Plant accident in the sediment samples along with a high fraction of clay material, which is characteristic of shelf and slope sediments suggesting a near shore source.
 
"This was a bit of a surprise because when we think of sediment in the ocean, we think of it as sinking vertically, originating from someplace above. But what this study clearly shows is that the only place that the material in our sediment traps could have come from was the continental shelf and slope buried nearshore. We know this because the coastal sediments from the shelf have a unique Fukushima radioactive and mineral signal," Buesseler said.
 
The data also revealed that peak movements of the sediments with radiocesium coincided with passing typhoons which likely triggered the resuspension of coastal sediments. Radiocesium was still detected in sediment samples from July 2014.
 
"The total transport is small, though it is readily detectable. One percent or less of the contaminated sediment that's moving offshore every year means things aren't going to change very fast," Buesseler said. "What's buried is going to stay buried for decades to come. And that's what may be contributing to elevated levels of cesium in fish—particularly bottom-dwelling fish off Japan."
 
While there were hundreds of different radionuclides released from the Fukushima Daiichi Nuclear Power Plant during the disaster, after the initial decay of contaminants with half lives (the time it takes for one half of a given amount of radionuclide to decay) less than days to weeks, much of the attention has remained focused on cesium-137 and-134— two of the more abundant contaminants. Cesium-134 has a half-life of a little over two years, and so any found in the ocean could come only from the reactors at Fukushima. Cesium-137 has a half-life of roughly 30 years and is also known to have entered the Pacific as a result of aboveground nuclear weapons tests in the 1950s and ’60s, providing a benchmark against which to measure any additional releases from the reactors.
 
In October, Buesseler and the research team will return to Japan to redeploy more sediment traps. The continued study will help estimate how long it takes to decrease the level of radiocesium in seafloor sediments near the Fukushima Daiichi Nuclear Power Plant.
 
The research was funded initially by a Rapid Response Grant from the National Science Foundation, and continued for three years through support from the Deerbook Charitable Trust and Gordon and Betty Moore Foundation.
Japan Agency for Marine-Earth ScienceJapan Agency for Marine-Earth Science and TechnologyNational Science Foundation
The February 2024 edition of Marine Technology Reporter is focused on Oceanographic topics and technologies.
Read the Magazine Sponsored by

The Clock is Ticking on the Doomsday Glacier

Marine Technology Magazine Cover Mar 2024 -

Marine Technology Reporter is the world's largest audited subsea industry publication serving the offshore energy, subsea defense and scientific communities.

Subscribe
Marine Technology ENews subscription

Marine Technology ENews is the subsea industry's largest circulation and most authoritative ENews Service, delivered to your Email three times per week

Subscribe for MTR E-news