Marine Technology Reporter Blogs - acoustic
Understanding Subsea Acoustic Leak Detection and Condition Monitoring – Part 1
As more and more equipment is placed on the seafloor, especially in deep waters but also in shallow waters, concerns grow over potential hydrocarbon leaks from trees, manifolds, pumps, pipelines, flowlines, risers and valves. It’s no small challenge to have a reliable subsea leak detection system that can monitor the large array of subsea systems used in modern deepwater fields and on top of that there is the need to monitor the working condition of all this equipment and others, such as ESP’s and other pumps, which are rotating equipment. Acoustic emissions are the stress waves produced by the sudden internal stress redistribution of materials caused by changes in the internal structure.
GE’s Naxys A10 – Subsea Acoustic Leak Detection
During the recent Rio O&G 2014 Expo and Conference a range of new products for the O&G industry were launched. The size of the event, with over 1,000 companies present and tens of thousands of daily visitors made it a great medium for showing new products to the market. GE had its large booth constantly full and was probably the company, which had the largest number of new products on display. Naxys joined GE in September 2012 as a world-class sensors developer for the subsea sector. With its headquarter in Bergen, Norway, Naxys develops and supplies leak detection and condition monitoring sensors based on proprietary, passive acoustic hydrophone technology.
Future ROV Technology - Subsea Wireless Control
Wireless subsea technology is becoming a fundamental part of the oil and gas industry worldwide. Back in 2010, Woods Hole Oceanographic Institution (WHOI) scientists and engineers announced testing of an undersea optical communications system that, complemented by acoustics, enabled a virtual revolution in high-speed undersea data collection and transmission. Acoustic techniques were developed, which are now the predominant mode of underwater communications between ships and smaller, autonomous and remote control vehicles. However, acoustic systems, although capable of long-range communication, transmit data at limited speeds and delayed delivery rates due to the relatively slow speed of sound in water.
Future ROV Technology - Subsea Wireless Control
Wireless subsea technology is becoming a fundamental part of the oil and gas industry worldwide. Back in 2010, Woods Hole Oceanographic Institution (WHOI) scientists and engineers announced testing of an undersea optical communications system that, complemented by acoustics, enabled a virtual revolution in high-speed undersea data collection and transmission. Acoustic techniques were developed, which are now the predominant mode of underwater communications between ships and smaller, autonomous and remote control vehicles. However, acoustic systems, although capable of long-range communication, transmit data at limited speeds and delayed delivery rates due to the relatively slow speed of sound in water.
Future ROV Technology - Subsea Wireless Control
Wireless subsea technology is becoming a fundamental part of the oil and gas industry worldwide. Back in 2010, Woods Hole Oceanographic Institution (WHOI) scientists and engineers announced testing of an undersea optical communications system that, complemented by acoustics, enabled a virtual revolution in high-speed undersea data collection and transmission. Acoustic techniques were developed, which are now the predominant mode of underwater communications between ships and smaller, autonomous and remote control vehicles. However, acoustic systems, although capable of long-range communication, transmit data at limited speeds and delayed delivery rates due to the relatively slow speed of sound in water.
Future ROV Technology - Subsea Wireless Control
Wireless subsea technology is becoming a fundamental part of the oil and gas industry worldwide. Back in 2010, Woods Hole Oceanographic Institution (WHOI) scientists and engineers announced testing of an undersea optical communications system that, complemented by acoustics, enabled a virtual revolution in high-speed undersea data collection and transmission. Acoustic techniques were developed, which are now the predominant mode of underwater communications between ships and smaller, autonomous and remote control vehicles. However, acoustic systems, although capable of long-range communication, transmit data at limited speeds and delayed delivery rates due to the relatively slow speed of sound in water.
AUVs in the Brazilian O&G industry
AUVs had only been used for a limited number of tasks dictated by the technology available until newer technologies were developed. With the development of more advanced processing capabilities and high yield power supplies, AUVs are now being used in Brazil for some new tasks, although its primary function is still seismic studies and environment analysis.The players in the Brazilian O&G market use AUVs in conjunction with Survey ships to make detailed maps of the seafloor before they start building subsea infrastructure; pipelines and subsea completions can be installed in the most cost effective manner with minimum disruption to the environment.