Marine Technology Reporter Blogs - pelamis

FloWave - Circular Ocean Energy Research Pool

June 6, 2014

flo Wave Floor
The unique FloWave Ocean Energy Research Facility, represents a great asset for reducing risks and refining performance of new marine energy designs to scale before building a first prototype, such as tide or wave energy farms. Its circular shape means waves have no reflections and can come from multiple directions, to mimic stormy seas. FloWave was conceived for cutting edge academic research into wave and tidal current interactions, the FloWave is also an amazing tool for commercial developers to ensure their technologies and projects perform as expected. FloWave is the only research wave pool in the world capable of validating CFD layout, micro-siting and energy yield predictions with physical modeling, before companies commit to investing tens of millions in the project itself.

Wave Power – The Pelamis Concept

August 7, 2013

2
Wave energy is produced when electricity generators are placed on the surface of the ocean. The energy provided is most often used in desalination plants, power plants and water pumps. Energy output is determined by wave height, wave speed, wavelength, and water density. Waves are generated by the wind as it blows across the sea surface, so that energy is transferred from the wind to the waves. Wave energy is sometimes confused with tidal energy, which is quite different. Waves travel vast distances across oceans at great speed. The longer and stronger the wind blows over the sea surface, the higher, longer, faster and more powerful are the waves.

Pelamis P2 – How the Wave Energy Converter Operates

August 9, 2013

image 14 2626
The Pelamis P2 is the second-generation Pelamis Wave Energy machine and includes a number of significant design improvements. The P2 design has been sold to utility customers E.ON and ScottishPower Renewables and are currently being tested for a number of commercial scale projects. At 180m long, 4m diameter and weighing around 1350 tons (mostly sand ballast), the P2 Pelamis is wider, longer and heavier than the P1 design machine. This allows the Pelamis to capture more energy while substantially reducing the cost per MW. Comprised of five tubes with four joints, the P2 has an extra tube section and an extra power module. An improved power take off system for the P2 allows higher efficiencies, enhanced control resolution and increased reliability.