Wednesday, December 24, 2025

Subsea Oil and Gas Production

Various Aspects of Subsea Oil and Gas Production

There are many underwater oil and gas fields all over the world and subsea oil and gas production refers to the industry that explores, drills and develops oil and gas fields in these locations. Anything related to this industry is referred to using the “subsea” prefix – subsea developments, subsea projects, subsea wells and so on.

Oil and gas fields can be situated either in shallow water or deep water, and specific facilities are created for each type. Shallow water (shelf) indicates shallow depths and in this case, saturation diving (diving technique used in order to avoid the “bends”), jackup drilling rigs (mobile platforms that rest on supporting legs) and fixed offshore structures are used. When it comes to deepwater, the projects are located deeper than 600 feet undersea, and technology such floating drilling vessels and oil platforms are used, and the underwater vehicles are exclusively unmanned, as vessels with human occupants are not practical.

Subsea oil and gas production began in 1947 in the Gulf of Mexico, where Kerr-McGee completed the first offshore well. The idea of developing this type of production gained popularity 30 years later, when developers thought of placing exploitation and production equipment encapsulated in a sealed chamber directly on the seabed. As a result, hydrocarbon would be produced and it would float to a processing facility onshore or offshore, whichever would be most practical. This is how subsea engineering began, together with all the systems and technology associated with this field.

Any equipment functioning below water level would be called subsea production systems, and subsea oil and gas production technology falls under this name as well. The first subsea completions were developed in under 1,000 feet deep and they were shallow water completions, while those at depth greater than 1,000 feet were known as deepwater completions. Today, subsea oil and gas production takes place at more than 3,000 meters deep (10,000 ft.).

The exploitation evolved in this direction as the reserves of oil and gas in shallow water areas have become rare and the industry moved to deepwater, where its activity encountered many challenges. Deepwater completions have developed exponentially since 1995, thus the required technology and software kept the pace. 

The subsea production system

Whether the subsea oil and gas production takes place in shallow or deepwater, both activities require subsea production systems. These systems are made of several components – a completed well, seabed wellhead, subsea tie-in to flow line system, a production tree and underwater equipment and control facilities that help operate the well. There can be simple, offshore or onshore systems, based on a single satellite well, featuring a flowline linked to a fixed platform, or complex systems, containing several wells template or spread around a manifold.

The latest underwater technologies facilitate the economical exploitation of gas and oil from deep waters and they are generally called subsea production systems, encompassing drilling, and field development and operation equipment. 

Hydrographic survey for the subsea oil and gas production industry 

The underwater survey for positioning of the wells is vital for subsea oil and gas production industry. The hydrographic survey includes soil investigation and geophysical and geotechnical field development survey. These surveys have the purpose of identifying potential hazards for the economic activity, as well as engineering constraints, assessing the impact of subsea activities on the environment and determining ocean floor and sub-bottom conditions.

Subsea surveys include setting vertical route profiles, assessing the features of the seabed, establishing a contour plan and particularities of undersea formations, such as reefs. They aim to locate possible obstructions, and identify additional factors that may interfere with the exploitation in good conditions of that particular underwater field area. Laboratory testing and geotechnical sampling is also required to establish the exact mechanical properties and nature of the underwater field where the extraction facility is situated, as well as the areas surrounding pipelines and other platforms.

Equipment used in subsea oil and gas production industry 

As previously mentioned, the subsea oil and gas production industry requires specific technology that varies with the depth at which the exploitation process takes place. In order to move this equipment, certain types of vessels are required, which have to feature diving equipment for shallow water work, and unmanned technology for deep water exploitation. Many precautions and safety standards need to be respected, as installations used in offshore economic activities are sophisticated and extremely heavy. 

Two types of processes are involved in subsea installations – the installation of underwater equipment, such as trees and templates, that can be achieved using floating drilling rigs, and the installation of pipelines and risers, with the aid of an installation barge that uses J-lay, reel lay or S-lay.

Underwater power supplies for oil and gas production

Power supplies are essential for any type of underwater activity and mainly for the oil and gas industry. A power supply is necessary for processing the entire well stream on the seabed and the lack of it leads to halting all underwater processing operations. Some of the power supplies used in underwater oil and gas exploitation are EPU (electrical power unit), UPS (uninterruptable power supply) or HPU (hydraulic power unit). 

Other aspects of subsea oil and gas production

All activities of system engineering require qualified personnel, with proper training. Some companies offer on-the-job training for new entry positions, but usually employers search for personnel with at least a university degree. Undersea system engineering encompasses equipment application and development, production system design and system integration. 

Well testing is also important to confirm the efficacy of a reservoir and to locate any problems that may interfere with the long-term production. Sometimes, well extended tests are performed to asses the potential for development of a certain well. 

Inspection and maintenance of the oil and gas production facilities must take place periodically. This is accomplished with the use of ROVs for surveys and repairs of deepwater systems, and divers, for missions taking place in shallow waters. If the equipment is surface based, then the tools and methods necessary to repair it would be similar to those used on onshore facilities.     

Tags: Oil and Gas

© Phoenix

Phoenix Assists US Navy with Aircraft Recovery in the South China Sea

Phoenix's International (Phoenix) recently assisted the Naval Sea System Command…

© Adobe Stock/Alifa Gallery

Orlen, Grupa WB Collaborate to Improve Maritime Infrastructure Security

State-controlled Polish refiner Orlen and private defence technology company Grupa WB have agreed to

(Credit: DOF Group)

DOF Bags Two Deals in Asia-Pacific Region

Norwegian offshore vessel owner and subsea services provider DOF Group has secured…

Least-squares Kirchhoff PSDM (LS-KPSDM) full stack seismic image overlaid with the 12Hz TL-FWI velocity model. In this example, the high-resolution LS-KPSDM image and geologically-conformal FWI model together clearly show flat spots (indicated by arrows) – DHI-supported leads highlighting potential hydrocarbon reservoirs (image courtesy of Viridien Earth Data).

Viridien Completes Reimaging of BM-S-2 Multi-Client Survey in Santos Basin

Viridien has successfully completed the BM-S-2 seismic reimaging project in the southern…

SW Duchess (Credit: Shearwater Geoservices)

Shearwater Set to Start Multi-Client Survey Offshore Nigeria

Offshore seismic services firm Shearwater Geoservices has finalized the preparations…

R/V Falkor (too) following a bow reconstruction that significantly improves the precision and reliability of the ship’s sonar systems in capturing high-quality mapping data, even in challenging weather conditions. Photo: Misha Vallejo Prut/Schmidt Ocean Institute

Schmidt Ocean Institute Advances R/V Falkor (too)’s Mapping Capabilities

Schmidt Ocean Institute announced it has mapped two million square kilometers of…

Enigma #303093 - 2023 Jun 11 • Fort Lauderdale, Florida. © Engima

2025: Fascinated with Subsea Discovery

Our fascination with the depths of the ocean revealed itself in some of our most…

Capt. Charlie MacVean with some of his USS SEAWOLF (SSN575) divers. (Photograph courtesy of John Freeman.)

In Memoriam: Captain Charles Robert MacVean, USN, (Ret.), PhD

The book, Blind Man’s Bluff, describes the secret USN submarine operations known…

(Credit: Fugro)

Fugro Nets Mubadala Energy’s Deepwater Gas Job in Asia

Fugro has secured a large contract with Mubadala Energy to deliver advanced soil…

Figure 1. Ocean Networks Canada’s hydrophone and Dalhousie University’s Deep Acoustic Lander are used to monitor hydrothermal vents. Brendan Smith and his Ph.D. advisor, Prof. David Barclay, used hydrophones operated by Ocean Networks Canada in the Pacific Ocean and the European Multidisciplinary Seafloor and water column Observatory in the Atlantic Ocean to monitor two vents on the seafloor. 
Photo: Ocean Networks Canada

Battery Power Management and Control

The management of DC power is one of the basic challenges in designing an autonomous ocean lander.

(Credit: NKT)

NKT Expands Swedish Cable Accessories Plant Amid Rising Demand

NKT has completed the construction of a new test hall, the expansion of production capacity…

(Credit: Subsea7)

Subsea7 Answers Chevron’s Call for Work at Gas Field off Australia

Subsea7 has secured a contract from Chevron Australia for subsea installation work on the Gorgon Sta

Related Articles

Unmanned Underwater Vehicles

Evolution and Applications of Unmanned Underwater Vehicles (UUVs)Unmanned underwater vehicles or UUVs are those machines that can operate underwater without a human on board. There are two different types of UUVs, those that need to be controlled by a human on board of a vessel…

Ocean Science and Research

Short Introduction to Ocean Science and Research: Marine Geology, Geophysics and Biology

Nominate Your Business for an MTR100 Award

Marine Technology Reporter's annual MTR100 awards edition is the industry's most awaited annual ranking of the leading companies serving the global underwater and subsea industry. Participants annually come from every corner of the globe and every sector of the industry.

Remotely Operated Vehicles

History, Types and Applications of Remotely Operated Vehicles (for Undersea Use) These remotely operated vehicles are also known as ROVs and they are a subcategory of undersea vehicles, robots that can operate under water for diverse purposes.

Remote Remote Sensing – Environmental Monitoring

The two known main types of remote sensing and data gathering are: passive remote sensing and active remote sensing. The natural radiation that is emitted or reflected by the object or surrounding area is detected by the passive sensors. The…
As 2025 comes to a close, MTR explores trends for 2026 and the newest products and vessels in the maritime industry.
Read the Magazine Sponsored by

Maintaining Position and Precision in Challenging ROV Missions

Marine Technology Magazine Cover Nov 2025 -

Marine Technology Reporter is the world's largest audited subsea industry publication serving the offshore energy, subsea defense and scientific communities.

Subscribe
Marine Technology ENews subscription

Marine Technology ENews is the subsea industry's largest circulation and most authoritative ENews Service, delivered to your Email three times per week

Subscribe for MTR E-news