Friday, November 14, 2025

Introduction to Underwater Communications

Introduction to Underwater Communications

The father of underwater communication can be considered Leonardo da Vinci, who discovered the possibility of listening on a long submersed tube to detect the approach of a distant ship. But the development of underwater communication, in the modern sense of the words, began during World War II, for military purposes. Successful underwater communications can be realized in two ways: through wires (submarine cables or tethers) or wireless, using acoustic, laser or radio waves.

A typical submarine communications cable is made of a group of wires layered on the bottom of the sea or ocean which carry different types of telecommunications between users separated from large surfaces of water, most commonly in the connection of continents and adjacent islands. First submarine communication cables were used to carry telegraphy traffic; next generations have been developed for the telephonic traffic and for data communications.

All modern submarine cables now use optical fibers for the transport of digital payloads which carry telephone, Internet and private data traffic. The major part of subsea intercontinental information traffic is carried by the undersea cables, due to their great reliability. Such a cable is built with multiple paths in the event of a cable break. On the other hand, overseas satellite links can be disturbed by turbulences in the geomagnetic field.

The costs for these submarine communication cables which link continents and carry terabits of information per second are very high, so many governments consider them to be vital for their economies and created protection zones restricting the activities that could be potentially harmful for cables.

Antarctica is the only continent yet to be reached by a submarine telecommunications cable. All phone, video, and e-mail traffic must be relayed to the rest of the world via the satellite which is still quite unreliable. But the costs of submarine communication cables are extremely high, due to the extreme weather conditions on this continent.

The wire links called tethers, between divers (either human or devices like ROVs or AOVs) and the control center on the surface, function on the same principle, only the distances covered are smaller. Underwater wireless communications are utilized in many activity domains: off shore oil and gas industry, collection of scientific data that are recorded at submersed stations, the monitoring of environmental pollution, communication between divers, fathering of data from submerged devices like RUVs or AUVs.

Underwater acoustic communication is rapidly growing due to research and engineering made possible by the extent of former military application into commercial fields.There are different means of wireless transmitting signals under water, not only the acoustic waves. The radio waves of extra low frequencies can propagate any distance in the good conductive salt water, but they require high power transmitters equipped with large antennae in order to cover long distances. 

Clear sea water attenuates less the optical waves, like laser waves, but they are affected by dispersion. This is why the use of the narrow laser beams in the transmission of optical signals requires high precision in pointing. Until the laser technology will be adapted for practical use, the best solution for communicating under water, in applications where cable communication or tethering is not appropriate, remain the acoustic waves. 

United States first developed an underwater telephone used to communicate with submarines on distances of several kilometers. A new generation of underwater communication systems began to evolve due to VLSI technology. Once compact DSPs having moderate power requirements became available, processing complex signal and data compression algorithms could be implemented for the first time at the submerged end of an underwater communication system. 

The development of efficient communication systems increased the range of their applications but also the requirements on the system throughput and performances. To perform the maintenance of submerged platforms, pipelines or other facilities, divers were replaced with acoustically controlled robots. Acoustical communication systems are today able of facilitating high-quality video transmissions down from the bottom of the deepest ocean trenches up to the research vessels at the surface or to transmit telemetry data over long horizontal distances. 

The majority of both military and commercial applications solicit today real time communications both in point to point links and in network configurations. The research aims the development of efficient signal processing algorithms, multiple access methods, encoding schemes, protocols for long propagation delays and the strict power requirements of the underwater environment.

Basically, a sonic underwater communication system is comprising an electronic waterproofed package including a battery source, the transducer (antenna), waterproofed earphone/s, microphone and a securing device (a belt buckle), a push-to-talk incorporated control or a Voice Operated transmitter (VOX) and an assembly to mount to a full face mask or to a mouth mask. There are some improvements available: Squelch control, VOX, multi channels, longer battery life, longer range, surface station.The squelch circuit allows the user to suppress marine back ground noise commonly found in salt waters and also manmade noise which will be found anywhere man is. The disadvantage of using squelch is that it not only suppresses noise but decreases range.

Voice Operated Transmission (VOX) is designed to allow hands free operation; when the circuit hears sound, it triggers the transmitter. As long as it hears sound it keeps the transmitter ON. When it does not hear anything for a set time, typically about 1 to 1 ½ seconds, it turns off the transmitter and cycles back to the receive mode. But divers make lots of noise in their mouth or full face mask when they off gasses and VOX circuit hears and triggers the transmitter. It is for this reason most good VOX designs have some sort of control over the sensitivity setting. Multi-channels: for the commercial and military diver teams that are operating in the same area alternate channels they can choose to communicate through are necessary.

Surface Station: In order to talk to free swimming Scuba divers using through-water communications, you must have a through- water device on the same frequency, be within range and have a transducer in the water. The user simple lowers the transducer into the water and all divers talking within range and on the same frequency will be heard.

Tags: Underwater Communications

(Credit: Seaturns)

Seaturns Advances Full-Scale Wave Energy Trials in France

French wave energy startup Seaturns has started preparations for Phase II of its…

(Credit: Screenshot/Video by Ørsted)

Ørsted to License Low-Noise Monopile Installation Tech, Inks Deal with Luxcara

Ørsted has launched its new offshore installation technology platform, Osonic, after…

(Credit: ADNOC L&S)

ADNOC L&S Presents UAE’s First Autonomous Offshore Vessels

ADNOC Logistics & Services has unveiled the UAE’s first remotely operated offshore…

Rhodamine dye is a non-toxic tracer commonly used in aquatic systems to study water movement. In the seed box trial, rhodamine is used to understand patterns of water flow with sensors and drones. The dye helps (i) visualise how long water—and therefore larvae—stay in the area before dispersing, and (ii) track where and how quickly water (and larvae) move after release. Image: G Carlin/CSIRO

Subsea Technology Helps Coral Larvae Find Home

This week, researchers at Australia’s Southern Cross University and CSIRO gave hope…

Source: Seaspan

Seaspan Delivers Canadian Coast Guard Research Vessel

Seaspan Shipyards has officially delivered the Offshore Oceanographic Science Vessel (OOSV)…

Dish with droplets of blow mounted on a small drone. (Photo by Amy Warren,
NEAq/WHOI, NMFS/NOAA Permit #21371)

New Study Shows Connection Between Whale Health and Respiratory Microbes

A new study published today in The ISME (International Society for Microbial Ecology)…

© Witherby Publishing Group

Witherbys Sign Licensing Agreement to Release Official MCA, ILO eBooks on Witherby Connect

Witherby Publishing Group has announced a new licensing agreement with The Stationery Office (TSO)…

(Credit: OPT)

OPT, Mythos AI Partner Up for Autonomous Maritime Systems Boost

Ocean Power Technologies (OPT) has partnered with Mythos AI to integrate advanced…

(Credit: PXGEO)

PXGEO Inks Two Seismic Acquisition Contracts with Petrobras off Brazil

Marine geophysical services company PXGEO has signed two significant contracts with…

© Seequent

Webinar: Seequent Unlocks Subsea Intelligence

Join Seequent for a free webinar and a deep dive into offshore wind cable burial…

Kraken’s KATFISH and ISO20 LARS on an Australian naval vessel. © Kraken

Kraken Robotics Appoints BlueZone Group as Sales Representative for Australia, New Zealand

Kraken Robotics Inc. announced the appointment of BlueZone Group as an authorized…

© Unique Group

DEEP Partners with Unique Group to Deliver Subsea Human Habitat

Unique Group, a global leader in subsea technologies and engineering, is the specialized…

Related Articles

How Can Marine Science Help Society?

The seas and oceans have always represented one of the greatest challenges for the human kind. Nowadays, almost all countries admit the decisive role of oceans in climate and land systems, the importance of coasts, seas and oceans and their ecosystems for human health and welfare.

Remote Imaging in Underwater Environments

Underwater instruments are used for remote sensing, because the earth is an aquatic planet and as much as 80% of its surface is covered by water. Moreover, there is a strong interest in knowing what lies in underwater. Underwater remote imaging…

Unmanned Underwater Vehicles

Evolution and Applications of Unmanned Underwater Vehicles (UUVs)Unmanned underwater vehicles or UUVs are those machines that can operate underwater without a human on board. There are two different types of UUVs, those that need to be controlled by a human on board of a vessel…

Moorings

A vessel is said to be moored when it is fastened to a fixed object such as a bollard, pier, quay or the seabed, or to a floating object such as an anchor buoy.Mooring is often accomplished using thick ropes called mooring lines or hawsers.

The Oceanology International 50th Anniversary Edition

To celebrate Oceanology International’s 50th anniversary, Oceanology International will collaborate with Marine Technology Reporter to produce a commemorative edition in celebration of 50 years of Oceanology International.
Understanding our oceans: hydrographic solutions for navigation, surveys, communication and beyond.
Read the Magazine Sponsored by

Editorial

Marine Technology Magazine Cover Sep 2025 -

Marine Technology Reporter is the world's largest audited subsea industry publication serving the offshore energy, subsea defense and scientific communities.

Subscribe
Marine Technology ENews subscription

Marine Technology ENews is the subsea industry's largest circulation and most authoritative ENews Service, delivered to your Email three times per week

Subscribe for MTR E-news