Subsea Oil and Gas Production

Various Aspects of Subsea Oil and Gas Production

There are many underwater oil and gas fields all over the world and subsea oil and gas production refers to the industry that explores, drills and develops oil and gas fields in these locations. Anything related to this industry is referred to using the “subsea” prefix – subsea developments, subsea projects, subsea wells and so on.

Oil and gas fields can be situated either in shallow water or deep water, and specific facilities are created for each type. Shallow water (shelf) indicates shallow depths and in this case, saturation diving (diving technique used in order to avoid the “bends”), jackup drilling rigs (mobile platforms that rest on supporting legs) and fixed offshore structures are used. When it comes to deepwater, the projects are located deeper than 600 feet undersea, and technology such floating drilling vessels and oil platforms are used, and the underwater vehicles are exclusively unmanned, as vessels with human occupants are not practical.

Subsea oil and gas production began in 1947 in the Gulf of Mexico, where Kerr-McGee completed the first offshore well. The idea of developing this type of production gained popularity 30 years later, when developers thought of placing exploitation and production equipment encapsulated in a sealed chamber directly on the seabed. As a result, hydrocarbon would be produced and it would float to a processing facility onshore or offshore, whichever would be most practical. This is how subsea engineering began, together with all the systems and technology associated with this field.

Any equipment functioning below water level would be called subsea production systems, and subsea oil and gas production technology falls under this name as well. The first subsea completions were developed in under 1,000 feet deep and they were shallow water completions, while those at depth greater than 1,000 feet were known as deepwater completions. Today, subsea oil and gas production takes place at more than 3,000 meters deep (10,000 ft.).

The exploitation evolved in this direction as the reserves of oil and gas in shallow water areas have become rare and the industry moved to deepwater, where its activity encountered many challenges. Deepwater completions have developed exponentially since 1995, thus the required technology and software kept the pace. 

The subsea production system

Whether the subsea oil and gas production takes place in shallow or deepwater, both activities require subsea production systems. These systems are made of several components – a completed well, seabed wellhead, subsea tie-in to flow line system, a production tree and underwater equipment and control facilities that help operate the well. There can be simple, offshore or onshore systems, based on a single satellite well, featuring a flowline linked to a fixed platform, or complex systems, containing several wells template or spread around a manifold.

The latest underwater technologies facilitate the economical exploitation of gas and oil from deep waters and they are generally called subsea production systems, encompassing drilling, and field development and operation equipment. 

Hydrographic survey for the subsea oil and gas production industry 

The underwater survey for positioning of the wells is vital for subsea oil and gas production industry. The hydrographic survey includes soil investigation and geophysical and geotechnical field development survey. These surveys have the purpose of identifying potential hazards for the economic activity, as well as engineering constraints, assessing the impact of subsea activities on the environment and determining ocean floor and sub-bottom conditions.

Subsea surveys include setting vertical route profiles, assessing the features of the seabed, establishing a contour plan and particularities of undersea formations, such as reefs. They aim to locate possible obstructions, and identify additional factors that may interfere with the exploitation in good conditions of that particular underwater field area. Laboratory testing and geotechnical sampling is also required to establish the exact mechanical properties and nature of the underwater field where the extraction facility is situated, as well as the areas surrounding pipelines and other platforms.

Equipment used in subsea oil and gas production industry 

As previously mentioned, the subsea oil and gas production industry requires specific technology that varies with the depth at which the exploitation process takes place. In order to move this equipment, certain types of vessels are required, which have to feature diving equipment for shallow water work, and unmanned technology for deep water exploitation. Many precautions and safety standards need to be respected, as installations used in offshore economic activities are sophisticated and extremely heavy. 

Two types of processes are involved in subsea installations – the installation of underwater equipment, such as trees and templates, that can be achieved using floating drilling rigs, and the installation of pipelines and risers, with the aid of an installation barge that uses J-lay, reel lay or S-lay.

Underwater power supplies for oil and gas production

Power supplies are essential for any type of underwater activity and mainly for the oil and gas industry. A power supply is necessary for processing the entire well stream on the seabed and the lack of it leads to halting all underwater processing operations. Some of the power supplies used in underwater oil and gas exploitation are EPU (electrical power unit), UPS (uninterruptable power supply) or HPU (hydraulic power unit). 

Other aspects of subsea oil and gas production

All activities of system engineering require qualified personnel, with proper training. Some companies offer on-the-job training for new entry positions, but usually employers search for personnel with at least a university degree. Undersea system engineering encompasses equipment application and development, production system design and system integration. 

Well testing is also important to confirm the efficacy of a reservoir and to locate any problems that may interfere with the long-term production. Sometimes, well extended tests are performed to asses the potential for development of a certain well. 

Inspection and maintenance of the oil and gas production facilities must take place periodically. This is accomplished with the use of ROVs for surveys and repairs of deepwater systems, and divers, for missions taking place in shallow waters. If the equipment is surface based, then the tools and methods necessary to repair it would be similar to those used on onshore facilities.     

Tags: Oil and Gas

In the demanding environment of ultra-deep waters, where reliability Parkburn Precision Handling Systems and Scantrol AS have joined forces to support Stabbert Maritime Group's Offshore Support Vessel (OSV) Ocean Guardian. Credit: Scantrol

Parkburn, Scantrol Collaborate for Offshore Support Vessel Performance in Ultra-Deep Waters

In the demanding environment of ultra-deep waters, where reliability is paramount…

On May 1, the Port of Gulfport will implement continuous autonomous subsea surveillance, using Ocean Aero’s technology, the Triton AUSV. Credit: Ocean Aero

Ocean Aero to Continuously Monitor the Port of Gulfport Autonomously

On May 1, the Port of Gulfport will implement continuous autonomous subsea surveillance.

WAM-V USV (Credit: OPT)

OPT Sends Off WAM-V USV for Indo-Pacific Operations

Marine power, data and service solutions company Ocean Power Technologies (OPT) has…

(Credit: CRP Subsea)

CRP Subsea to Supply Well Equipment for Shell’s Whale Development

CRP Subsea, an AIS company, has secured a contract with Shell for the supply of crushable…

Source: The Metals Co

First Deep-Sea Mining Company Asks Trump for International Permit

Deep-sea mining firm The Metals Co asked the Trump administration on Tuesday to approve…

Venterra has confirmed the successful completion of a regional metocean characterization study for the South Coast Designated Maritime Area Plan (SC-DMAP), another crucial step in Ireland's renewable energy journey. Credit: Venterra

Venterra Completes Celtic Sea Metocean Study for Ireland's South Coast Designated Maritime Area Plan

Venterra has confirmed the successful completion of a regional metocean characterization…

Teledyne Marine has announced advancements in customer service and support with investments in facilities, personnel, and global service locations. Credit: Teledyne

Teledyne Marine: Vehicles Unit Expands Customer Service and Support

Teledyne Marine has announced advancements in customer service and support with investments…

BOEM Seeks Public Comment for Eleventh National Outer Continental Shelf Oil and Gas Leasing Program

On April 18, 2025, the Department of the Interior announced that the Bureau of Ocean…

SPARUS II hovering AUV mapping a rocky area during a survey mission. Credit: IQUA Robotics

IQUA Robotics: SPARUS II AUV Tackles Multimodal Mapping for Exploration and Inspection

Micro and small-sized AUVs can integrate a wide range of sensors and navigation systems…

A new reflection paper co-authored by PML Honorary Fellow Torsten Thiele urges the International Seabed Authority to declare a moratorium/precautionary pause on such activity. Credit: PML

Concerns for Deep Sea Ecosystems Heighten as US Opens Opportunities For Mining and Extraction

In the same week as the US Government moved to accelerate offshore mining and open…

Jet-It trencher (Credit: Van Oord)

Van Oord Expands its Trencher Fleet

Dutch offshore installation firm Van Oord has introduced Jet-It as the latest unit…

WHOI Postdoctoral Investigator Carolin Nieder holds a 3D-printed shark jaw made by staff in DunkWorks Lab within the George & Wendy David Center for Ocean Innovation. Credit: Daniel Hentz, Woods Hole Oceanographic Institution

WHOI: New Discovery Reveals Sharks May Detect and Produce Sound

Scientists are discovering for the first time that sharks may be capable of their…

Related Articles

Career Opportunities for Seekers of Marine Technology Jobs

As the energy resources of land have started to decrease by the day, scientists in research centers and universities, as well as eager businessmen, have turned their attention to developing means of energy production in the waters of the planetary ocean.

Moorings

A vessel is said to be moored when it is fastened to a fixed object such as a bollard, pier, quay or the seabed, or to a floating object such as an anchor buoy.Mooring is often accomplished using thick ropes called mooring lines or hawsers.

Remote Remote Sensing – Environmental Monitoring

The two known main types of remote sensing and data gathering are: passive remote sensing and active remote sensing. The natural radiation that is emitted or reflected by the object or surrounding area is detected by the passive sensors. The…

Introduction to Underwater Communications

Introduction to Underwater CommunicationsThe father of underwater communication can be considered Leonardo da Vinci, who discovered the possibility of listening on a long submersed tube to detect the approach of a distant ship. But the development of underwater communication…

Improvements in Subsea Security Technology

Improvements in Subsea Security TechnologyIn recent years, commercial, scientific and military activity have increased exponentially within maritime areas. The material goods involved in such kind of activity – commercial ports, scientific research devices…
In this edition MTR explores the drivers for subsea exploration in 2025 and beyond
Read the Magazine Sponsored by

Canadian Shipwreck Hunters

Marine Technology Magazine Cover Mar 2025 -

Marine Technology Reporter is the world's largest audited subsea industry publication serving the offshore energy, subsea defense and scientific communities.

Subscribe
Marine Technology ENews subscription

Marine Technology ENews is the subsea industry's largest circulation and most authoritative ENews Service, delivered to your Email three times per week

Subscribe for MTR E-news