Subsea Oil and Gas Production

Various Aspects of Subsea Oil and Gas Production

There are many underwater oil and gas fields all over the world and subsea oil and gas production refers to the industry that explores, drills and develops oil and gas fields in these locations. Anything related to this industry is referred to using the “subsea” prefix – subsea developments, subsea projects, subsea wells and so on.

Oil and gas fields can be situated either in shallow water or deep water, and specific facilities are created for each type. Shallow water (shelf) indicates shallow depths and in this case, saturation diving (diving technique used in order to avoid the “bends”), jackup drilling rigs (mobile platforms that rest on supporting legs) and fixed offshore structures are used. When it comes to deepwater, the projects are located deeper than 600 feet undersea, and technology such floating drilling vessels and oil platforms are used, and the underwater vehicles are exclusively unmanned, as vessels with human occupants are not practical.

Subsea oil and gas production began in 1947 in the Gulf of Mexico, where Kerr-McGee completed the first offshore well. The idea of developing this type of production gained popularity 30 years later, when developers thought of placing exploitation and production equipment encapsulated in a sealed chamber directly on the seabed. As a result, hydrocarbon would be produced and it would float to a processing facility onshore or offshore, whichever would be most practical. This is how subsea engineering began, together with all the systems and technology associated with this field.

Any equipment functioning below water level would be called subsea production systems, and subsea oil and gas production technology falls under this name as well. The first subsea completions were developed in under 1,000 feet deep and they were shallow water completions, while those at depth greater than 1,000 feet were known as deepwater completions. Today, subsea oil and gas production takes place at more than 3,000 meters deep (10,000 ft.).

The exploitation evolved in this direction as the reserves of oil and gas in shallow water areas have become rare and the industry moved to deepwater, where its activity encountered many challenges. Deepwater completions have developed exponentially since 1995, thus the required technology and software kept the pace. 

The subsea production system

Whether the subsea oil and gas production takes place in shallow or deepwater, both activities require subsea production systems. These systems are made of several components – a completed well, seabed wellhead, subsea tie-in to flow line system, a production tree and underwater equipment and control facilities that help operate the well. There can be simple, offshore or onshore systems, based on a single satellite well, featuring a flowline linked to a fixed platform, or complex systems, containing several wells template or spread around a manifold.

The latest underwater technologies facilitate the economical exploitation of gas and oil from deep waters and they are generally called subsea production systems, encompassing drilling, and field development and operation equipment. 

Hydrographic survey for the subsea oil and gas production industry 

The underwater survey for positioning of the wells is vital for subsea oil and gas production industry. The hydrographic survey includes soil investigation and geophysical and geotechnical field development survey. These surveys have the purpose of identifying potential hazards for the economic activity, as well as engineering constraints, assessing the impact of subsea activities on the environment and determining ocean floor and sub-bottom conditions.

Subsea surveys include setting vertical route profiles, assessing the features of the seabed, establishing a contour plan and particularities of undersea formations, such as reefs. They aim to locate possible obstructions, and identify additional factors that may interfere with the exploitation in good conditions of that particular underwater field area. Laboratory testing and geotechnical sampling is also required to establish the exact mechanical properties and nature of the underwater field where the extraction facility is situated, as well as the areas surrounding pipelines and other platforms.

Equipment used in subsea oil and gas production industry 

As previously mentioned, the subsea oil and gas production industry requires specific technology that varies with the depth at which the exploitation process takes place. In order to move this equipment, certain types of vessels are required, which have to feature diving equipment for shallow water work, and unmanned technology for deep water exploitation. Many precautions and safety standards need to be respected, as installations used in offshore economic activities are sophisticated and extremely heavy. 

Two types of processes are involved in subsea installations – the installation of underwater equipment, such as trees and templates, that can be achieved using floating drilling rigs, and the installation of pipelines and risers, with the aid of an installation barge that uses J-lay, reel lay or S-lay.

Underwater power supplies for oil and gas production

Power supplies are essential for any type of underwater activity and mainly for the oil and gas industry. A power supply is necessary for processing the entire well stream on the seabed and the lack of it leads to halting all underwater processing operations. Some of the power supplies used in underwater oil and gas exploitation are EPU (electrical power unit), UPS (uninterruptable power supply) or HPU (hydraulic power unit). 

Other aspects of subsea oil and gas production

All activities of system engineering require qualified personnel, with proper training. Some companies offer on-the-job training for new entry positions, but usually employers search for personnel with at least a university degree. Undersea system engineering encompasses equipment application and development, production system design and system integration. 

Well testing is also important to confirm the efficacy of a reservoir and to locate any problems that may interfere with the long-term production. Sometimes, well extended tests are performed to asses the potential for development of a certain well. 

Inspection and maintenance of the oil and gas production facilities must take place periodically. This is accomplished with the use of ROVs for surveys and repairs of deepwater systems, and divers, for missions taking place in shallow waters. If the equipment is surface based, then the tools and methods necessary to repair it would be similar to those used on onshore facilities.     

Tags: Oil and Gas

© ead72 / Adobe Stock

Global Coral Bleaching Crisis Spreading

More than four-fifths of the world's coral reef areas have been affected by devastating…

The BC Marine Energy and Decarbonization Hub is a core initiative of COAST, Pacific Canada’s hub for the sustainable blue economy, delivered in partnership with the University of Victoria. Credit: COAST

COAST, University of Victoria Join to Launch the BC Marine Energy and Decarbonization Hub

In a stride for the Canadian clean energy transition, two leaders in British Columbia’s…

FarSounder has announced the release of a new citizen science feature in its latest SonaSoft™ software update, introducing the ability for users to report whale sightings and floating trash/debris. Credit: FarSounder

FarSounder: News Citizen Science Capabilities with Whale and Debris Reporting Feature

FarSounder has announced the release of a new citizen science feature in its latest…

CSignum Secures £6M to Advance Underwater Wireless Networks

CSignum, a provider of wireless technology extending IoT communications beneath the surface…

Snakehead is a modular, reconfigurable, multi-mission underwater vehicle deployed from submarine large ocean interfaces, with a government-owned architecture, mission autonomy and vehicle software.
Photo by Richard Allen, Naval Undersea Warfare Center Division Newport

Navy Signals Need for New Large AUV Class

The Defense Innovation Unit of the Pentagon has issued a call under the Project Description "CAMP…

© Volodymyr / Adobe Stock

Subsea Inspection’s New Boss

IBM recently explained why AI orchestration is important: As AI systems grow more advanced…

© currahee_shutter / Adobe Stock

India Stretches Bids Deadline for 13 Offshore Deep-Sea Mineral Blocks

India has extended an auction of deep-sea blocks containing critical minerals used…

Bridgewater Discovery geotechnical survey vessel (Credit: Kim Heng)

Kim Heng’s Rebuilt Geotechnical Survey Vessel Sets Sail

Singapore's offshore services firm Kim Heng has held a christening ceremony for the…

Sea Vorian Expands SEA360 Fleet with Teledyne Gavia AUV

Teledyne Marine announced the purchase and delivery of a Gavia Autonomous Underwater…

(Credit: WSense)

Fincantieri Invests in Deep Tech Scale-Up for Naval and Submarine Sector

Fincantieri has formalized its investment in WSense, a deep tech scale-up specialized…

(Credit: Fugro)

Fugro Cuts Jobs and Scales Back US Operations

Dutch geodata firm Fugro on Tuesday said it started reducing its U.S. workforce and…

Iraq Signs Deal for Subsea Oil Pipeline

Iraq has signed a deal to establish a subsea oil pipeline for exports via its southern ports, the co

Related Articles

Remotely Operated Vehicles

History, Types and Applications of Remotely Operated Vehicles (for Undersea Use) These remotely operated vehicles are also known as ROVs and they are a subcategory of undersea vehicles, robots that can operate under water for diverse purposes.

Find the Best Marine Technology School

As any other question involving superlatives, the answer depends on your expectations, financial possibilities and proximity to your home town. If you are one of the lucky ones living nearby a harbor city or anywhere close to the ocean, you…

Types and Applications of Subsea Vehicles

Types and Applications of Subsea Vehicles Manned undersea vehicles The idea of subsea vehicles operated by man dates back to the 18th century, and the first submersible machine was built in 1775 by David Bushnell and his brother, Ezra and was called Turtle.

Seafloor Mapping And Imaging

Technology Used in Seafloor Mapping/ImagingKnowing the depth of the seafloor and locating its hazards is of the main interest to shipping. The first maps were produced to identify the near-shore hazards and only in the nineteenth century sounding…

Hydrographic Survey

Applications and EquipmentA hydrographic survey implies data collection about certain bodies of water. Its purpose is to ensure the safety operation of boats and detecting any impediment that might occur. Some use the term to refer only to ocean and sea waters…
In this edition MTR explores the drivers for subsea exploration in 2025 and beyond
Read the Magazine Sponsored by

How to Build a Weather Station Tailored to Your Application

Marine Technology Magazine Cover Mar 2025 -

Marine Technology Reporter is the world's largest audited subsea industry publication serving the offshore energy, subsea defense and scientific communities.

Subscribe
Marine Technology ENews subscription

Marine Technology ENews is the subsea industry's largest circulation and most authoritative ENews Service, delivered to your Email three times per week

Subscribe for MTR E-news