Thursday, February 12, 2026

Subsea Oil and Gas Production

Various Aspects of Subsea Oil and Gas Production

There are many underwater oil and gas fields all over the world and subsea oil and gas production refers to the industry that explores, drills and develops oil and gas fields in these locations. Anything related to this industry is referred to using the “subsea” prefix – subsea developments, subsea projects, subsea wells and so on.

Oil and gas fields can be situated either in shallow water or deep water, and specific facilities are created for each type. Shallow water (shelf) indicates shallow depths and in this case, saturation diving (diving technique used in order to avoid the “bends”), jackup drilling rigs (mobile platforms that rest on supporting legs) and fixed offshore structures are used. When it comes to deepwater, the projects are located deeper than 600 feet undersea, and technology such floating drilling vessels and oil platforms are used, and the underwater vehicles are exclusively unmanned, as vessels with human occupants are not practical.

Subsea oil and gas production began in 1947 in the Gulf of Mexico, where Kerr-McGee completed the first offshore well. The idea of developing this type of production gained popularity 30 years later, when developers thought of placing exploitation and production equipment encapsulated in a sealed chamber directly on the seabed. As a result, hydrocarbon would be produced and it would float to a processing facility onshore or offshore, whichever would be most practical. This is how subsea engineering began, together with all the systems and technology associated with this field.

Any equipment functioning below water level would be called subsea production systems, and subsea oil and gas production technology falls under this name as well. The first subsea completions were developed in under 1,000 feet deep and they were shallow water completions, while those at depth greater than 1,000 feet were known as deepwater completions. Today, subsea oil and gas production takes place at more than 3,000 meters deep (10,000 ft.).

The exploitation evolved in this direction as the reserves of oil and gas in shallow water areas have become rare and the industry moved to deepwater, where its activity encountered many challenges. Deepwater completions have developed exponentially since 1995, thus the required technology and software kept the pace. 

The subsea production system

Whether the subsea oil and gas production takes place in shallow or deepwater, both activities require subsea production systems. These systems are made of several components – a completed well, seabed wellhead, subsea tie-in to flow line system, a production tree and underwater equipment and control facilities that help operate the well. There can be simple, offshore or onshore systems, based on a single satellite well, featuring a flowline linked to a fixed platform, or complex systems, containing several wells template or spread around a manifold.

The latest underwater technologies facilitate the economical exploitation of gas and oil from deep waters and they are generally called subsea production systems, encompassing drilling, and field development and operation equipment. 

Hydrographic survey for the subsea oil and gas production industry 

The underwater survey for positioning of the wells is vital for subsea oil and gas production industry. The hydrographic survey includes soil investigation and geophysical and geotechnical field development survey. These surveys have the purpose of identifying potential hazards for the economic activity, as well as engineering constraints, assessing the impact of subsea activities on the environment and determining ocean floor and sub-bottom conditions.

Subsea surveys include setting vertical route profiles, assessing the features of the seabed, establishing a contour plan and particularities of undersea formations, such as reefs. They aim to locate possible obstructions, and identify additional factors that may interfere with the exploitation in good conditions of that particular underwater field area. Laboratory testing and geotechnical sampling is also required to establish the exact mechanical properties and nature of the underwater field where the extraction facility is situated, as well as the areas surrounding pipelines and other platforms.

Equipment used in subsea oil and gas production industry 

As previously mentioned, the subsea oil and gas production industry requires specific technology that varies with the depth at which the exploitation process takes place. In order to move this equipment, certain types of vessels are required, which have to feature diving equipment for shallow water work, and unmanned technology for deep water exploitation. Many precautions and safety standards need to be respected, as installations used in offshore economic activities are sophisticated and extremely heavy. 

Two types of processes are involved in subsea installations – the installation of underwater equipment, such as trees and templates, that can be achieved using floating drilling rigs, and the installation of pipelines and risers, with the aid of an installation barge that uses J-lay, reel lay or S-lay.

Underwater power supplies for oil and gas production

Power supplies are essential for any type of underwater activity and mainly for the oil and gas industry. A power supply is necessary for processing the entire well stream on the seabed and the lack of it leads to halting all underwater processing operations. Some of the power supplies used in underwater oil and gas exploitation are EPU (electrical power unit), UPS (uninterruptable power supply) or HPU (hydraulic power unit). 

Other aspects of subsea oil and gas production

All activities of system engineering require qualified personnel, with proper training. Some companies offer on-the-job training for new entry positions, but usually employers search for personnel with at least a university degree. Undersea system engineering encompasses equipment application and development, production system design and system integration. 

Well testing is also important to confirm the efficacy of a reservoir and to locate any problems that may interfere with the long-term production. Sometimes, well extended tests are performed to asses the potential for development of a certain well. 

Inspection and maintenance of the oil and gas production facilities must take place periodically. This is accomplished with the use of ROVs for surveys and repairs of deepwater systems, and divers, for missions taking place in shallow waters. If the equipment is surface based, then the tools and methods necessary to repair it would be similar to those used on onshore facilities.     

Tags: Oil and Gas

Credit: Seafloor Systems

Seafloor Systems Inc. as US Channel Partner for GeoAcoustics

GeoAcoustics Ltd, a leader in hydroacoustic survey technology, has announced a new…

Martens en Van Oord Purchases Autonomous Survey Vessel From Demcon unmanned systems

Martens en Van Oord, a contractor in roadworks, civil and hydraulic engineering,…

Artificial Reef Installation Completed by Fugro Offshore Australia

Fugro has successfully installed an artificial reef off the coast of Dampier, Western Australia…

© FellowNeko - stock.adobe.com

Saipem Supplies Hydrone-W ROV for ISPRA's Arcadia Vessel

Saipem has been awarded a contract with the T. Mariotti shipyard in Genoa to supply…

FTV Xplorer dockside at Oi. © Kongsberg Discovery

Kongsberg Discovery Prepares Product Launches, Demonstrations at Oi26

Kongsberg Discovery is using this year’s Oceanology International (Oi) as a platform…

(Credit: TGS)

TGS Embarks on Multi-Client 2D Survey off Angola

Energy data and intelligence TGS has started the Ultra Profundo multi-client 2D survey…

Orbital Marine Power's O2 tidal energy turbine (Credit: Orbital Marine Power)

Orbital Marine Grows UK and Canada Tidal Energy Orderbook to 32MW

Scottish firm Orbital Marine Power has secured an additional Contract for Difference…

(Credit: Elemental Energies)

Elemental Energies Expands Subsurface Expertise with APT Buy

Elemental Energies has acquired Norway-based geoscience specialist Applied Petroleum…

(Credit: Inyanga Marine Energy Group)

HydroWing Wins 10MW CfD Boost for Morlais Tidal Energy Project

HydroWing Tidal Energy Projects, part of Inyanga Marine Energy Group, has secured…

Transocean Barents semi-sub rig (Credit: Transocean)

Transocean-Valaris Tie-Up to Create $17B Offshore Drilling Major with 73 Rigs

Offshore drilling contractor Transocean has agreed to acquire Valaris in an all-stock…

© NUWC

NUWC Division Newport Looks to Build Partnerships, Hosts Rhode Island Commerce Officials

As the Naval Undersea Warfare Center (NUWC) Division Newport looks to expand on its…

Silicon Sensing engineers working on an IMU prototype. © Silicon Sensing Systems

Silicon Sensing Expands Distribution in North America

Silicon Sensing Systems Ltd has extended its distribution agreement with Althen Sensors…

Related Articles

Find the Best Marine Technology School

As any other question involving superlatives, the answer depends on your expectations, financial possibilities and proximity to your home town. If you are one of the lucky ones living nearby a harbor city or anywhere close to the ocean, you…

Autonomous Underwater Vehicles

Autonomous underwater vehicles are robots using a propulsion system in order to navigate undersea and they do not require a human occupant; instead, they are controlled by an onboard computer system and can move in all three directions. Despite any challenges of the environments…

What’s really down there? Seequent Unlocks Subsea Intelligence.

Working underneath the world’s waters is a challenge in and of itself, a challenge exacerbated if an operator does not have a clear picture of the make-up of the seabed with insights on the potential traps that might await.

Types and Applications of Subsea Vehicles

Types and Applications of Subsea Vehicles Manned undersea vehicles The idea of subsea vehicles operated by man dates back to the 18th century, and the first submersible machine was built in 1775 by David Bushnell and his brother, Ezra and was called Turtle.

How Can Marine Science Help Society?

The seas and oceans have always represented one of the greatest challenges for the human kind. Nowadays, almost all countries admit the decisive role of oceans in climate and land systems, the importance of coasts, seas and oceans and their ecosystems for human health and welfare.
As 2025 comes to a close, MTR explores trends for 2026 and the newest products and vessels in the maritime industry.
Read the Magazine Sponsored by

Gavia AUV: Modular Autonomy for Global Naval Defense

Marine Technology Magazine Cover Nov 2025 -

Marine Technology Reporter is the world's largest audited subsea industry publication serving the offshore energy, subsea defense and scientific communities.

Subscribe
Marine Technology ENews subscription

Marine Technology ENews is the subsea industry's largest circulation and most authoritative ENews Service, delivered to your Email three times per week

Subscribe for MTR E-news