Remote Remote Sensing – Environmental Monitoring

The two known main types of remote sensing and data gathering are: passive remote sensing and active remote sensing. The natural radiation that is emitted or reflected by the object or surrounding area is detected by the passive sensors. The most common source of radiation that can be measured by passive sensors is the reflected sunlight. Passive remote sensors can be considered the film photography, the infrared and the charge – couple devices and the radiometers.

On the other hand, the active collectors of information emit energy in order to scan objects and areas whereupon a sensor then detects and measures the radiation that is reflected or backscattered from the target. The most common example of active remote sensing is RADAR, that emits radio waves and measures the time delay between emission and return, and also the lost of energy of the wave, establishing the location, height, speed and direction of an object.

To collect data on dangerous or inaccessible areas is possible only through the use of remote sensing. Remote sensing has many applications, including the monitoring of activities causing deforestation areas such as the basin of the Amazon, the study of ice and glaciers features in Arctic and Antarctic regions, and the sounding of the depth and bottom structure of coastal and ocean depths. Military intelligence during the period of the cold war made use of stand-off collection of data about dangerous border areas.

Remote sensing is also used to replace more costly and slower data collection methods on the ground, ensuring that areas or objects are not disturbed during the process. Land managers and all kind of governmental administrators require up-to-date, detailed information about land conditions that can be provided using many tools, but the most suitable in many situations is the remote sensing. It uses measurement devices and instruments mounted on satellites or in planes to produce images or representations of the Earth's surface. 

The images obtained through remote sensing are used in many applications, like gas, oil and mineral exploration, ocean currents monitoring, land use planning  or the monitoring of forests and agricultural areas. In order to analyze and compare the characteristics of erosion, pollution, vegetation distribution and forestry, weather or land use, data are collected using different devices like satellites, spacecrafts and aircrafts, buoys, ships or helicopters. Those characteristics offer important information for administrators or scientists, and must be observed, tracked, imaged and mapped.

Other major domains of interest for the process of remote sensing are archaeological investigations, military observation, city planning and geomorphology surveying. The natural long and short term phenomena and trends like El Nino are monitored by researchers who collect information and gather data from different parts of the Earth’s electromagnetic spectrum using different sensing and analysis systems: orbital platform, larger scale ground-based or aerial sensing systems. There are also for the use of different areas of earth sciences, agricultural fields like land usage and conservation, the management of natural resources and national security. 

Some of the most intensively surveyed regions are the coastal seas; they are under heavy anthropogenic stress due to development of port, both military and commercial, and increase of the ship traffic. The increase in concentration of suspended particulate matter (SPM) in seawater is inevitable along the dredging operations. While SPM concentration increases, the water transparency decreases which leads to worsening of underwater light conditions. An indicator of water quality in the coastal zone is the growth of benthic macro-algae which are affected by the diminishing of light intensity that penetrates to the sea bottom.

Underwater light conditions worsen in the proximity of the harbors and in the coastal sea. But, if the dredging is carried out mainly from late autumn to early spring when the growth of the macro-algae is limited by water temperature, the diminishing of underwater light intensity shows a minor effect on the biomass.

When sensitive and critical marine areas are close to the dredge site it is crucial to monitor the SPM transport and distribution along with the estimation of dredging impact on marine environment. The monitoring system combines satellite remote sensing and numerical modeling and is supported by measurements. The modeling part combines a hydrodynamic model, a particle transport model and a benthic macro-algae growth model. A simple approach is followed in the formulation of the system and determination of the required relationships that are based on the measurements. The monitoring system was applied to Pakri Bay during dredging in Paldiski North harbor which lasted one and a half year. Comparison of SPM distributions from remote sensing images and numerical model results showed qualitatively similar patterns. Quantitative comparison allowed separating SPM concentrations due to the dredging operations from the background values of natural origin.

Remote sensing has numerous applications: The SONAR system, comprising the passive sonar, situation when the operator is listening and registering the sounds produced by another object, which can be manmade or marine fauna and the active sonar; in this case, pulses of sounds are emitted and the operator is listening for the echoes, produced when sound emitted encounters different objects. Sonar is used to detect, range and measure underwater objects or relief. The altimeters mounted on satellites use laser and radar technology to provide a wide range of data. To map features on the seafloor to a resolution of around a mile they measure the bulge of water caused by gravity. To determine the wind speed and direction, and the surface ocean currents and their directions, the altimeters measure the height and wave-length of ocean waves.

Space borne radar altimeters send a microwave pulse to the ocean’s surface and time how long it takes to return. These instruments have proven to be excellent tools for mapping ocean-surface topography, the hills and valleys of the sea surface. The technology uses a microwave radiometer that corrects any delay that may be caused by the presence of vapors of water in the atmosphere. They also have the capability of correcting the influence of electrons in the dry air mass of the atmosphere and in its superior part, the ionosphere. It is possible to determine the sea-surface height to within one inch, through combining the data collected with the precise location of the spacecraft. Information on wind speed and the height of ocean waves are also provided through analyzing the strength and shape of the returning signal. In the end, scientists can determine the speed and direction of marine currents, the distribution of heat on ocean surface and to estimate climate variations.

Tags: Environmental Monitoring

An oiled Kemp’s ridley sea turtle rescued from the Gulf of Mexico in 2010. CREDIT: Shigetomo Hirama

Sea Turtle Hormone Levels Affected by Deepwater Horizon Oil Spill -Study

New research is revealing potential impacts on the hormones of sea turtles affected…

A fully automated 44 structural pipeline repair clamp designed and engineered by Subsea Innovation. Image courtesy Unique Group

Unique Group Acquires Subsea Innovation

Unique Group acquired subsea technology and equipment manufacturer Subsea Innovation.

A juvenile smooth hammerhead shark seen in the Galápagos, Ecuador. (© Greenpeace / Sophie Cooke)

Scientists Discover Possible Hammerhead Shark Nursery in Ecuador's Galapagos

A team of researchers has discovered a potential breeding ground for smooth hammerhead…

With a long history spanning more than 20 years, the AWAC ADCP has a proven track record of reliability and longevity. (Photo: Nortek)

Wave Measurement Technology Helps Protect Vietnam’s Coastal Population

The Mekong Delta in Vietnam is home to over 20 million people and acts as a globally…

Matthew Peck (Photo: Teledyne Interconnect Solutions)

Matthew Peck Joins Teledyne Interconnect Solutions

Teledyne Interconnect Solutions, a part of Teledyne Marine, announced Matthew Peck…

Bay du Nord FPSO render (Credit: Equinor)

Subsea7 and Equinor Strengthen Collaboration, Agreeing Work on Two Fields

Subsea7 has signed a new long-term strategic collaboration agreement between Equinor…

(Credit: ROVOP)

Chouest Expands Subsea Capabilities with ROVOP Acquisition

The Chouest group has acquired ROVOP, a Scottish remotely operated vehicle (ROV) company…

(Credit: Balmoral Comtec)

Balmoral Comtec Gets Hornsea 3 Cable Protection Job

UK-based offshore energy supply chain company Balmoral Comtec has secured a multi…

Manta Ray vehicle being towed in preparation for testing (Photo: Northrop Grumman)

Manta Ray UUV Prototype Completes In-water Testing

The Manta Ray prototype uncrewed underwater vehicle (UUV) built by Northrop Grumman…

(Photo: SMD)

SMD Invests £300K in Clean Energy

Subsea engineering and technology company SMD reports it has spent more than £300…

Sub Bottom Imager (Credit: Kraken Robotics)

Kraken Robotics Wins $11M of New Service Contracts

Canadian marine technology company Kraken Robotics has secured $11 million of new…

Image courtesy OSIL

OSIL Dredge Monitoring Buoy Network for Van Oord

Ocean Scientific International Limited (OSIL) supplied a network of 1.2m data buoys…

Related Articles

Definition and Nature of Marine Engineering

71% of the Earth’s surface is hidden under the planetary ocean. Despite human kind’s continuous efforts and curiosity, only a small part of the navy-blue unknown has been discovered. Since life originated in seas, that inherent impulse to discover the ocean’s mysteries is maybe hidden in any of us.

Autonomous Underwater Vehicles

Autonomous underwater vehicles are robots using a propulsion system in order to navigate undersea and they do not require a human occupant; instead, they are controlled by an onboard computer system and can move in all three directions. Despite any challenges of the environments…

Marine Technology

Marine technology refers to a vast umbrella of elements that have helped us to explore what lives in bodies of water. This includes saltwater of the oceans and the freshwater of various lakes. It is amazing how many living things are found in water.

Seafloor Mapping And Imaging

Technology Used in Seafloor Mapping/ImagingKnowing the depth of the seafloor and locating its hazards is of the main interest to shipping. The first maps were produced to identify the near-shore hazards and only in the nineteenth century sounding…
The February 2024 edition of Marine Technology Reporter is focused on Oceanographic topics and technologies.
Read the Magazine Sponsored by

How to Choose the Best Inertial Solution for your Application and Accuracy Needs

Marine Technology Magazine Cover Mar 2024 -

Marine Technology Reporter is the world's largest audited subsea industry publication serving the offshore energy, subsea defense and scientific communities.

Subscribe
Marine Technology ENews subscription

Marine Technology ENews is the subsea industry's largest circulation and most authoritative ENews Service, delivered to your Email three times per week

Subscribe for MTR E-news