Saturday, September 13, 2025

Remote Remote Sensing – Environmental Monitoring

The two known main types of remote sensing and data gathering are: passive remote sensing and active remote sensing. The natural radiation that is emitted or reflected by the object or surrounding area is detected by the passive sensors. The most common source of radiation that can be measured by passive sensors is the reflected sunlight. Passive remote sensors can be considered the film photography, the infrared and the charge – couple devices and the radiometers.

On the other hand, the active collectors of information emit energy in order to scan objects and areas whereupon a sensor then detects and measures the radiation that is reflected or backscattered from the target. The most common example of active remote sensing is RADAR, that emits radio waves and measures the time delay between emission and return, and also the lost of energy of the wave, establishing the location, height, speed and direction of an object.

To collect data on dangerous or inaccessible areas is possible only through the use of remote sensing. Remote sensing has many applications, including the monitoring of activities causing deforestation areas such as the basin of the Amazon, the study of ice and glaciers features in Arctic and Antarctic regions, and the sounding of the depth and bottom structure of coastal and ocean depths. Military intelligence during the period of the cold war made use of stand-off collection of data about dangerous border areas.

Remote sensing is also used to replace more costly and slower data collection methods on the ground, ensuring that areas or objects are not disturbed during the process. Land managers and all kind of governmental administrators require up-to-date, detailed information about land conditions that can be provided using many tools, but the most suitable in many situations is the remote sensing. It uses measurement devices and instruments mounted on satellites or in planes to produce images or representations of the Earth's surface. 

The images obtained through remote sensing are used in many applications, like gas, oil and mineral exploration, ocean currents monitoring, land use planning  or the monitoring of forests and agricultural areas. In order to analyze and compare the characteristics of erosion, pollution, vegetation distribution and forestry, weather or land use, data are collected using different devices like satellites, spacecrafts and aircrafts, buoys, ships or helicopters. Those characteristics offer important information for administrators or scientists, and must be observed, tracked, imaged and mapped.

Other major domains of interest for the process of remote sensing are archaeological investigations, military observation, city planning and geomorphology surveying. The natural long and short term phenomena and trends like El Nino are monitored by researchers who collect information and gather data from different parts of the Earth’s electromagnetic spectrum using different sensing and analysis systems: orbital platform, larger scale ground-based or aerial sensing systems. There are also for the use of different areas of earth sciences, agricultural fields like land usage and conservation, the management of natural resources and national security. 

Some of the most intensively surveyed regions are the coastal seas; they are under heavy anthropogenic stress due to development of port, both military and commercial, and increase of the ship traffic. The increase in concentration of suspended particulate matter (SPM) in seawater is inevitable along the dredging operations. While SPM concentration increases, the water transparency decreases which leads to worsening of underwater light conditions. An indicator of water quality in the coastal zone is the growth of benthic macro-algae which are affected by the diminishing of light intensity that penetrates to the sea bottom.

Underwater light conditions worsen in the proximity of the harbors and in the coastal sea. But, if the dredging is carried out mainly from late autumn to early spring when the growth of the macro-algae is limited by water temperature, the diminishing of underwater light intensity shows a minor effect on the biomass.

When sensitive and critical marine areas are close to the dredge site it is crucial to monitor the SPM transport and distribution along with the estimation of dredging impact on marine environment. The monitoring system combines satellite remote sensing and numerical modeling and is supported by measurements. The modeling part combines a hydrodynamic model, a particle transport model and a benthic macro-algae growth model. A simple approach is followed in the formulation of the system and determination of the required relationships that are based on the measurements. The monitoring system was applied to Pakri Bay during dredging in Paldiski North harbor which lasted one and a half year. Comparison of SPM distributions from remote sensing images and numerical model results showed qualitatively similar patterns. Quantitative comparison allowed separating SPM concentrations due to the dredging operations from the background values of natural origin.

Remote sensing has numerous applications: The SONAR system, comprising the passive sonar, situation when the operator is listening and registering the sounds produced by another object, which can be manmade or marine fauna and the active sonar; in this case, pulses of sounds are emitted and the operator is listening for the echoes, produced when sound emitted encounters different objects. Sonar is used to detect, range and measure underwater objects or relief. The altimeters mounted on satellites use laser and radar technology to provide a wide range of data. To map features on the seafloor to a resolution of around a mile they measure the bulge of water caused by gravity. To determine the wind speed and direction, and the surface ocean currents and their directions, the altimeters measure the height and wave-length of ocean waves.

Space borne radar altimeters send a microwave pulse to the ocean’s surface and time how long it takes to return. These instruments have proven to be excellent tools for mapping ocean-surface topography, the hills and valleys of the sea surface. The technology uses a microwave radiometer that corrects any delay that may be caused by the presence of vapors of water in the atmosphere. They also have the capability of correcting the influence of electrons in the dry air mass of the atmosphere and in its superior part, the ionosphere. It is possible to determine the sea-surface height to within one inch, through combining the data collected with the precise location of the spacecraft. Information on wind speed and the height of ocean waves are also provided through analyzing the strength and shape of the returning signal. In the end, scientists can determine the speed and direction of marine currents, the distribution of heat on ocean surface and to estimate climate variations.

Tags: Environmental Monitoring

© Adobe Stock/Peter Hermes Furian

US Sides with Philippines Against South China Sea Nature Preserve

Secretary of State Marco Rubio on Friday said the U.S.

Rendering of a 15MW floating offshore wind substructure SnapWind Float (Credit: SHI)

SHI’s 15MW Floating Wind Platform Gets Lloyd’s Register’s Blessing

Lloyd’s Register (LR) has granted Approval in Principle (AiP) to Samsung Heavy Industries…

(Credit: Hellenic Cables)

Hellenic Cables Gets Subsea Interconnection Job in Greece

Hellenic Cables, the cables segment of Cenergy Holdings, has signed a turnkey contract…

(Credit: Vallourec)

French Firm Bags $1B Offshore Pipe Order from Petrobras

French tubular solutions supplier Vallourec has secured a major contract by Petrobras…

Source: Elementz Digital

Accelerator Targets Subsea AI Development

Subsea software-as-a-service provider Elementz Digital has announced a new accelerator…

Sercel WiNG DFU-3C passive seismic sensors can be used to image subsurface hydrogen-generating systems with greater precision and efficiency. Credit: Sercel

Viridien, Mantle8 Partner to Accelerate Hydrogen Exploration Across EMEA

Viridien, a technology, digital and Earth data company, and Mantle8, a French geoscience…

© HII

HII, Babcock Integrate UUVs with Submarine Weapon Handling and Launch Systems

Babcock International Group and HII signed a memorandum of understanding to bring…

L-R: Leon Hendriksen, Sales & Business Development Manager at Stema Offshore and Alan MacDonald, Head of Sales, UK, Europe and Africa, at Sonardyne. © Sonardyne

Stema Systems Adds Sonardyne USBL to Rental Fleet

Underwater survey equipment rental specialist Stema Systems has ordered the first…

© Scottish Association for Marine Science

Scottish Association for Marine Science Launches Crowdfunder to Give Gamers Science Missions

Scientists in Oban who use robotics to monitor the marine environment have used their…

Define points of contact based on upper/lower keywords or using a query! Export those contact points to a data file for gridding and view the surface in the 3D view. © Golden Software

Golden Software Expands 3D Drillhole Visualization, Overall Usability in Surfer Mapping Package

Golden Software has continued to enhance the 3D drillhole viewing functionality in…

© HII

HII Completes 750th REMUS Unmanned Undersea Vehicle for German Navy

HII, America’s largest military shipbuilder, and a leader in advanced unmanned autonomous…

Researchers use Remotely Operated Vehicle SuBastian to collect sediment push cores next to barrels discarded on the seafloor. Credit: Schmidt Ocean Institute.

Barrels of Caustic Waste Found Off California

New research from UC San Diego's Scripps Institution of Oceanography reveals that…

Related Articles

Nominate Your Business for an MTR100 Award

Marine Technology Reporter's annual MTR100 awards edition is the industry's most awaited annual ranking of the leading companies serving the global underwater and subsea industry. Participants annually come from every corner of the globe and every sector of the industry.

Types and Applications of Subsea Vehicles

Types and Applications of Subsea Vehicles Manned undersea vehicles The idea of subsea vehicles operated by man dates back to the 18th century, and the first submersible machine was built in 1775 by David Bushnell and his brother, Ezra and was called Turtle.

Hydrographic Survey

Applications and EquipmentA hydrographic survey implies data collection about certain bodies of water. Its purpose is to ensure the safety operation of boats and detecting any impediment that might occur. Some use the term to refer only to ocean and sea waters…

How Can Marine Science Help Society?

The seas and oceans have always represented one of the greatest challenges for the human kind. Nowadays, almost all countries admit the decisive role of oceans in climate and land systems, the importance of coasts, seas and oceans and their ecosystems for human health and welfare.

Autonomous Underwater Vehicles

Autonomous underwater vehicles are robots using a propulsion system in order to navigate undersea and they do not require a human occupant; instead, they are controlled by an onboard computer system and can move in all three directions. Despite any challenges of the environments…
Understanding our oceans: hydrographic solutions for navigation, surveys, communication and beyond.
Read the Magazine Sponsored by

Authors & Contributors

Marine Technology Magazine Cover Jul 2025 -

Marine Technology Reporter is the world's largest audited subsea industry publication serving the offshore energy, subsea defense and scientific communities.

Subscribe
Marine Technology ENews subscription

Marine Technology ENews is the subsea industry's largest circulation and most authoritative ENews Service, delivered to your Email three times per week

Subscribe for MTR E-news