Saturday, December 6, 2025

Hydrographic Survey

Applications and Equipment

A hydrographic survey implies data collection about certain bodies of water. Its purpose is to ensure the safety operation of boats and detecting any impediment that might occur. Some use the term to refer only to ocean and sea waters, while others use it in reference to any type of water, including rivers and lakes. For a hydrographic survey, scientists gather data about waves, currents and tides, aiming to create a pattern of how that water area behaves. 

While some environmental factors and characteristics of water can be predicted, such as tides, the level of temperature and salt, others are variable and do not always fall into a pattern, like wind. In the process of hydrographic survey, other factors must be included in the analysis. Specialists measure the depth of the water in rivers or oceans, taking into account the reefs and rocks undersea. 

As stated, hydrographic surveys have the purpose of insuring safety travel for vessels, therefore the analysis must follow certain strict conventions and regulations. For instance, if the depth of the water varies, the specialists must note the lowest depth possible, rather than calculating its average. Because of this, many believe that these recordings are not accurate, since they do not offer a loyal representation of the waterbed. Consequently, two different types of measurements take place in a survey – those focused on safety and those that provide accurate measurements, the latter ones being called bathymetric charts.

Applications of hydrographic survey

Maps resulting from hydrographic survey are mainly used for maritime safety and navigation. Both the public and private sector make significant investments in this field to ensure the safe navigation of their vessels and to exploit the subsea and above the sea environments in an optimum manner, gaining advantages of tactical, strategic or operational nature. The data collected is used in cable routing, research, educational purposes, dredging operations and many other applications.

Navigators are especially concerned in parameters such as the shape of the shores, depth of water, and type of ocean bed, so they can estimate correctly their navigation experience. This type of survey was usually made using either echo sounding or sonar methods, but they have been replaced with more advanced technology such as satellites with sophisticated electronic sensors. However, the traditional survey methods have not been eliminated.

The governments of many countries fund hydrographic surveys however there are also private companies that manifest increasing interest in this aspect. The strategies and methods of survey must be in accordance with the ones used by the International Hydrographic Organization.

Hydrographic Survey Equipment

The first surveys were conducted by measuring depths with sounding poles and hand lead lines, determining positions with three-point sextant fixes. In the 30’s, eco sounders were first developed, and they enabled the collection of more data than before. The hydrographic survey process was also sped up by the invention of electronic navigation systems, in the next decade. Nowadays, the nature of these surveys has become more complex and requires the use of very sophisticated technologies, that accurately measure parameters such as reefs, wrecks, banks, other obstructions, water depth, coastline position with high and low water marks (HW and LW), tide rips, fishing stakes, nature of the seafloor and the position of all floating navigation marks.

Equipment for hydrographic survey can be installed on all types of vessels, including ships, small vessels, AUVs (Autonomous underwater vehicles), UUVs (Unmanned Underwater Vehicles) or inflatable crafts. It may consist of magnetometers, sidescans, single and multibeam equipment featuring sidescan and multibeam sonars. In addition to this equipment, these surveys also use airborne remote sensing systems such as LIDAR (with laser techniques) and optronics.

For instance, in 1994, US Army Corps of Engineers (USACE) used the Scanning Hydrographic Operational Airborne Lidar Survey (SHOALS) in order to encourage the investments from private sectors in Lidar bathymetry, a technique that can accurately measure depths and topographic elevations, is able to cover extensive areas and was proved more efficient than the traditional acoustic survey methods.

The magnetometer is a tool that measures magnetic fields, in terms of strength and direction. Magnetometers are especially used in geographic surveying because they can detect large deposits of ferrous materials, but also in searching the precise location of shipwrecks and in pipelines surveys. They are more difficult to use than other instruments, yet the pieces of information they provide and more accurate and reliable. 

Sidescan sonars are a type of sonar systems that are able to create images of ocean floor (or lake or river bottoms) and they are appreciated and highly popular due to their low cost. They are also known as side-imaging sonars, single-beam echo sounder, side looking sonars, or bottom classification sonars. In addition to providing seafloor samples, and information on the type of texture in the ocean floor, they can also detect debris items that may prevent navigation or the activity of oil and gas companies and asses the condition of pipelines and cables on the sea floor and also provide accurate dimensions of the items investigated. Consequently, sidescan sonars are used in several industries, such as oil and gas industry, marine research and science, education, hydrographic agencies, coastguards. 

This piece of equipment features three components – a towfish, a cable for transmission and a processing unit. The towfish transmits and receives sounds from the surrounding ocean floor area and uses the echoes to create a “picture” of the seafloor, in which the protruding objects appear in dark and the shadows are lighter. Sidescan sonars are successful in offering accurate pictures of the investigated areas, but they cannot measure depths. 

The multi beam eco sounders are in fact sidescan sonars mounted on an array. These devices create a "swath" of soundings in order to fully cover an area. 

Portable tide gauges are other instruments used in hydrographic survey, with the purpose of measuring the sea level and tsunami detection. They can also store the results of calculations of Significant Wave Height and Full Wave Frequency. 

All this equipment cannot function unless featuring proper software applications. Companies sometimes develop their own software, in order to fulfill particular tasks.

Tags: Hydrographic Survey

Source: NOAA

NOAA holds Keel-Laying Ceremony for Charting and Mapping Vessel

A keel-laying ceremony has been held for Navigator, a new charting and mapping vessel…

Source: Kongsberg Maritime

Kongsberg Maritime Secures LARS Contract with Sea1 Offshore

Kongsberg Maritime has signed a major contract with Sea1 Offshore to deliver Launch…

The 3-in-1 system trial integrated tidal energy with vanadium flow batteries and a hydrogen electrolyser (Photo credits: EMEC, Orbital Marine Power)

EMEC Completes Tidal, Hydrogen and Battery Demonstration

A world-first demonstration combining tidal power, battery storage, and hydrogen…

Source: Nortek

Ensuring Reliable Navigation for Tactical Divers

Diver navigation has long presented a challenge. Ensuring diver safety is crucial…

The capsules in Greenland are being launched from two Royal Greenland trawlers, Avatoq and Kaassassuk. © Knud Olsen Egede / Royal Greenland

Global Efforts Underway to Document Plastic Pollution

This week, Greenland launched two “Plastic in a Bottle” capsules to track how plastic…

(Credit: XOCEAN)

XOCEAN Secures Five-Year Survey Deal for Six Dutch Offshore Wind Farms

Ocean data acquisition specialist XOCEAN has secured five-year contract to deliver…

Source: Saildrone

Saildrone Maps Cayman Islands EEZ

Saildrone has mapped the seafloor in the Cayman Islands Exclusive Economic Zone (EEZ)…

Source: NORBIT

NORBIT Introduces WINGHEAD X Sonar

Building on the success of its WINGHEAD sonar platform, NORBIT has introduced the…

(Credit: Kraken Robotics)

Kraken Books Multi-Million Dollar Sonar and Subsea Battery System Orders

Kraken Robotics has secured about $8.6 million (CAD 12 million) in new orders for…

Image courtesy Colonel Rachael Hoagland

Hull Cleaning Robotics: Army Beats Navy – the Hegseth Way!

Sticking to legacy tactics won't beat China — adopt Secretary Hegseth's and the Army…

Collaboration in FOCUS: Turnkey performance from MacArtney and Kongsberg Discovery. © Kongsberg Discovery

Kongsberg Discovery, MacArtney Partner for ROTV Surveying and Inspection Capability

Kongsberg Discovery and MacArtney Underwater Technology have signed a strategic Memorandum…

Jasmine Corbett / Manta Trust

Protecting Nature is Not Only About Preserving Beauty

CITES Secretary-General Ivonne Higuero spoke on November 23 in Samarkand, Uzbekistan…

Related Articles

Remote Remote Sensing – Environmental Monitoring

The two known main types of remote sensing and data gathering are: passive remote sensing and active remote sensing. The natural radiation that is emitted or reflected by the object or surrounding area is detected by the passive sensors. The…

Underwater Exploration Technology

The underwater exploration technology made it possible for humans to explore the undersea depths only within the past 50 years. Before this technology was invented, human kind had to rely on experienced divers, but even the most talented swimmer could only go as deep as 417 feet.

Offshore Oil and Gas Companies

Planning the exploitation of offshore oil and gas fieldsWhen oil and gas fields are uncovered and they seem to be profitable investments, companies need to figure out the best means to extract these resources. The planning must be carefully…

What’s really down there? Seequent Unlocks Subsea Intelligence.

Working underneath the world’s waters is a challenge in and of itself, a challenge exacerbated if an operator does not have a clear picture of the make-up of the seabed with insights on the potential traps that might await.

Types and Applications of Subsea Vehicles

Types and Applications of Subsea Vehicles Manned undersea vehicles The idea of subsea vehicles operated by man dates back to the 18th century, and the first submersible machine was built in 1775 by David Bushnell and his brother, Ezra and was called Turtle.
Understanding our oceans: hydrographic solutions for navigation, surveys, communication and beyond.
Read the Magazine Sponsored by

Navigation Transformation

Marine Technology Magazine Cover Nov 2025 -

Marine Technology Reporter is the world's largest audited subsea industry publication serving the offshore energy, subsea defense and scientific communities.

Subscribe
Marine Technology ENews subscription

Marine Technology ENews is the subsea industry's largest circulation and most authoritative ENews Service, delivered to your Email three times per week

Subscribe for MTR E-news