Hydrographic Survey

Applications and Equipment

A hydrographic survey implies data collection about certain bodies of water. Its purpose is to ensure the safety operation of boats and detecting any impediment that might occur. Some use the term to refer only to ocean and sea waters, while others use it in reference to any type of water, including rivers and lakes. For a hydrographic survey, scientists gather data about waves, currents and tides, aiming to create a pattern of how that water area behaves. 

While some environmental factors and characteristics of water can be predicted, such as tides, the level of temperature and salt, others are variable and do not always fall into a pattern, like wind. In the process of hydrographic survey, other factors must be included in the analysis. Specialists measure the depth of the water in rivers or oceans, taking into account the reefs and rocks undersea. 

As stated, hydrographic surveys have the purpose of insuring safety travel for vessels, therefore the analysis must follow certain strict conventions and regulations. For instance, if the depth of the water varies, the specialists must note the lowest depth possible, rather than calculating its average. Because of this, many believe that these recordings are not accurate, since they do not offer a loyal representation of the waterbed. Consequently, two different types of measurements take place in a survey – those focused on safety and those that provide accurate measurements, the latter ones being called bathymetric charts.

Applications of hydrographic survey

Maps resulting from hydrographic survey are mainly used for maritime safety and navigation. Both the public and private sector make significant investments in this field to ensure the safe navigation of their vessels and to exploit the subsea and above the sea environments in an optimum manner, gaining advantages of tactical, strategic or operational nature. The data collected is used in cable routing, research, educational purposes, dredging operations and many other applications.

Navigators are especially concerned in parameters such as the shape of the shores, depth of water, and type of ocean bed, so they can estimate correctly their navigation experience. This type of survey was usually made using either echo sounding or sonar methods, but they have been replaced with more advanced technology such as satellites with sophisticated electronic sensors. However, the traditional survey methods have not been eliminated.

The governments of many countries fund hydrographic surveys however there are also private companies that manifest increasing interest in this aspect. The strategies and methods of survey must be in accordance with the ones used by the International Hydrographic Organization.

Hydrographic Survey Equipment

The first surveys were conducted by measuring depths with sounding poles and hand lead lines, determining positions with three-point sextant fixes. In the 30’s, eco sounders were first developed, and they enabled the collection of more data than before. The hydrographic survey process was also sped up by the invention of electronic navigation systems, in the next decade. Nowadays, the nature of these surveys has become more complex and requires the use of very sophisticated technologies, that accurately measure parameters such as reefs, wrecks, banks, other obstructions, water depth, coastline position with high and low water marks (HW and LW), tide rips, fishing stakes, nature of the seafloor and the position of all floating navigation marks.

Equipment for hydrographic survey can be installed on all types of vessels, including ships, small vessels, AUVs (Autonomous underwater vehicles), UUVs (Unmanned Underwater Vehicles) or inflatable crafts. It may consist of magnetometers, sidescans, single and multibeam equipment featuring sidescan and multibeam sonars. In addition to this equipment, these surveys also use airborne remote sensing systems such as LIDAR (with laser techniques) and optronics.

For instance, in 1994, US Army Corps of Engineers (USACE) used the Scanning Hydrographic Operational Airborne Lidar Survey (SHOALS) in order to encourage the investments from private sectors in Lidar bathymetry, a technique that can accurately measure depths and topographic elevations, is able to cover extensive areas and was proved more efficient than the traditional acoustic survey methods.

The magnetometer is a tool that measures magnetic fields, in terms of strength and direction. Magnetometers are especially used in geographic surveying because they can detect large deposits of ferrous materials, but also in searching the precise location of shipwrecks and in pipelines surveys. They are more difficult to use than other instruments, yet the pieces of information they provide and more accurate and reliable. 

Sidescan sonars are a type of sonar systems that are able to create images of ocean floor (or lake or river bottoms) and they are appreciated and highly popular due to their low cost. They are also known as side-imaging sonars, single-beam echo sounder, side looking sonars, or bottom classification sonars. In addition to providing seafloor samples, and information on the type of texture in the ocean floor, they can also detect debris items that may prevent navigation or the activity of oil and gas companies and asses the condition of pipelines and cables on the sea floor and also provide accurate dimensions of the items investigated. Consequently, sidescan sonars are used in several industries, such as oil and gas industry, marine research and science, education, hydrographic agencies, coastguards. 

This piece of equipment features three components – a towfish, a cable for transmission and a processing unit. The towfish transmits and receives sounds from the surrounding ocean floor area and uses the echoes to create a “picture” of the seafloor, in which the protruding objects appear in dark and the shadows are lighter. Sidescan sonars are successful in offering accurate pictures of the investigated areas, but they cannot measure depths. 

The multi beam eco sounders are in fact sidescan sonars mounted on an array. These devices create a "swath" of soundings in order to fully cover an area. 

Portable tide gauges are other instruments used in hydrographic survey, with the purpose of measuring the sea level and tsunami detection. They can also store the results of calculations of Significant Wave Height and Full Wave Frequency. 

All this equipment cannot function unless featuring proper software applications. Companies sometimes develop their own software, in order to fulfill particular tasks.

Tags: Hydrographic Survey

In the demanding environment of ultra-deep waters, where reliability Parkburn Precision Handling Systems and Scantrol AS have joined forces to support Stabbert Maritime Group's Offshore Support Vessel (OSV) Ocean Guardian. Credit: Scantrol

Parkburn, Scantrol Collaborate for Offshore Support Vessel Performance in Ultra-Deep Waters

In the demanding environment of ultra-deep waters, where reliability is paramount…

On May 1, the Port of Gulfport will implement continuous autonomous subsea surveillance, using Ocean Aero’s technology, the Triton AUSV. Credit: Ocean Aero

Ocean Aero to Continuously Monitor the Port of Gulfport Autonomously

On May 1, the Port of Gulfport will implement continuous autonomous subsea surveillance.

Guests at this year’s Subsea Expo Awards Dinner helped to donate over USD$6,600 (£5,000) to national food redistribution charity FareShare. Credit: Global Underwater Hub

Subsea Expo Awards Raises Over $6k for UK Food Charity

Guests at this year’s Subsea Expo Awards Dinner helped to donate over USD$6,600 (£5…

Inside the RTSYS Comet-300 AUV

The two-man portable Comet-300 autonomous underwater vehicle (AUV) from RTSYS is…

WAM-V USV (Credit: OPT)

OPT Sends Off WAM-V USV for Indo-Pacific Operations

Marine power, data and service solutions company Ocean Power Technologies (OPT) has…

(Credit: CRP Subsea)

CRP Subsea to Supply Well Equipment for Shell’s Whale Development

CRP Subsea, an AIS company, has secured a contract with Shell for the supply of crushable…

Source: The Metals Co

First Deep-Sea Mining Company Asks Trump for International Permit

Deep-sea mining firm The Metals Co asked the Trump administration on Tuesday to approve…

Venterra has confirmed the successful completion of a regional metocean characterization study for the South Coast Designated Maritime Area Plan (SC-DMAP), another crucial step in Ireland's renewable energy journey. Credit: Venterra

Venterra Completes Celtic Sea Metocean Study for Ireland's South Coast Designated Maritime Area Plan

Venterra has confirmed the successful completion of a regional metocean characterization…

Teledyne Marine has announced advancements in customer service and support with investments in facilities, personnel, and global service locations. Credit: Teledyne

Teledyne Marine: Vehicles Unit Expands Customer Service and Support

Teledyne Marine has announced advancements in customer service and support with investments…

BOEM Seeks Public Comment for Eleventh National Outer Continental Shelf Oil and Gas Leasing Program

On April 18, 2025, the Department of the Interior announced that the Bureau of Ocean…

SPARUS II hovering AUV mapping a rocky area during a survey mission. Credit: IQUA Robotics

IQUA Robotics: SPARUS II AUV Tackles Multimodal Mapping for Exploration and Inspection

Micro and small-sized AUVs can integrate a wide range of sensors and navigation systems…

Bridgewater Discovery geotechnical survey vessel (Credit: Kim Heng)

Kim Heng’s Rebuilt Geotechnical Survey Vessel Sets Sail

Singapore's offshore services firm Kim Heng has held a christening ceremony for the…

Related Articles

Nominate Your Business for an MTR100 Award

Marine Technology Reporter's annual MTR100 awards edition is the industry's most awaited annual ranking of the leading companies serving the global underwater and subsea industry. Participants annually come from every corner of the globe and every sector of the industry.

Types and Applications of Subsea Vehicles

Types and Applications of Subsea Vehicles Manned undersea vehicles The idea of subsea vehicles operated by man dates back to the 18th century, and the first submersible machine was built in 1775 by David Bushnell and his brother, Ezra and was called Turtle.

Remote Imaging in Underwater Environments

Underwater instruments are used for remote sensing, because the earth is an aquatic planet and as much as 80% of its surface is covered by water. Moreover, there is a strong interest in knowing what lies in underwater. Underwater remote imaging…

Career Opportunities for Seekers of Marine Technology Jobs

As the energy resources of land have started to decrease by the day, scientists in research centers and universities, as well as eager businessmen, have turned their attention to developing means of energy production in the waters of the planetary ocean.

Underwater Exploration Technology

The underwater exploration technology made it possible for humans to explore the undersea depths only within the past 50 years. Before this technology was invented, human kind had to rely on experienced divers, but even the most talented swimmer could only go as deep as 417 feet.
In this edition MTR explores the drivers for subsea exploration in 2025 and beyond
Read the Magazine Sponsored by

People, Companies & Products News

Marine Technology Magazine Cover Mar 2025 -

Marine Technology Reporter is the world's largest audited subsea industry publication serving the offshore energy, subsea defense and scientific communities.

Subscribe
Marine Technology ENews subscription

Marine Technology ENews is the subsea industry's largest circulation and most authoritative ENews Service, delivered to your Email three times per week

Subscribe for MTR E-news