Wednesday, December 17, 2025

Hydrographic Survey

Applications and Equipment

A hydrographic survey implies data collection about certain bodies of water. Its purpose is to ensure the safety operation of boats and detecting any impediment that might occur. Some use the term to refer only to ocean and sea waters, while others use it in reference to any type of water, including rivers and lakes. For a hydrographic survey, scientists gather data about waves, currents and tides, aiming to create a pattern of how that water area behaves. 

While some environmental factors and characteristics of water can be predicted, such as tides, the level of temperature and salt, others are variable and do not always fall into a pattern, like wind. In the process of hydrographic survey, other factors must be included in the analysis. Specialists measure the depth of the water in rivers or oceans, taking into account the reefs and rocks undersea. 

As stated, hydrographic surveys have the purpose of insuring safety travel for vessels, therefore the analysis must follow certain strict conventions and regulations. For instance, if the depth of the water varies, the specialists must note the lowest depth possible, rather than calculating its average. Because of this, many believe that these recordings are not accurate, since they do not offer a loyal representation of the waterbed. Consequently, two different types of measurements take place in a survey – those focused on safety and those that provide accurate measurements, the latter ones being called bathymetric charts.

Applications of hydrographic survey

Maps resulting from hydrographic survey are mainly used for maritime safety and navigation. Both the public and private sector make significant investments in this field to ensure the safe navigation of their vessels and to exploit the subsea and above the sea environments in an optimum manner, gaining advantages of tactical, strategic or operational nature. The data collected is used in cable routing, research, educational purposes, dredging operations and many other applications.

Navigators are especially concerned in parameters such as the shape of the shores, depth of water, and type of ocean bed, so they can estimate correctly their navigation experience. This type of survey was usually made using either echo sounding or sonar methods, but they have been replaced with more advanced technology such as satellites with sophisticated electronic sensors. However, the traditional survey methods have not been eliminated.

The governments of many countries fund hydrographic surveys however there are also private companies that manifest increasing interest in this aspect. The strategies and methods of survey must be in accordance with the ones used by the International Hydrographic Organization.

Hydrographic Survey Equipment

The first surveys were conducted by measuring depths with sounding poles and hand lead lines, determining positions with three-point sextant fixes. In the 30’s, eco sounders were first developed, and they enabled the collection of more data than before. The hydrographic survey process was also sped up by the invention of electronic navigation systems, in the next decade. Nowadays, the nature of these surveys has become more complex and requires the use of very sophisticated technologies, that accurately measure parameters such as reefs, wrecks, banks, other obstructions, water depth, coastline position with high and low water marks (HW and LW), tide rips, fishing stakes, nature of the seafloor and the position of all floating navigation marks.

Equipment for hydrographic survey can be installed on all types of vessels, including ships, small vessels, AUVs (Autonomous underwater vehicles), UUVs (Unmanned Underwater Vehicles) or inflatable crafts. It may consist of magnetometers, sidescans, single and multibeam equipment featuring sidescan and multibeam sonars. In addition to this equipment, these surveys also use airborne remote sensing systems such as LIDAR (with laser techniques) and optronics.

For instance, in 1994, US Army Corps of Engineers (USACE) used the Scanning Hydrographic Operational Airborne Lidar Survey (SHOALS) in order to encourage the investments from private sectors in Lidar bathymetry, a technique that can accurately measure depths and topographic elevations, is able to cover extensive areas and was proved more efficient than the traditional acoustic survey methods.

The magnetometer is a tool that measures magnetic fields, in terms of strength and direction. Magnetometers are especially used in geographic surveying because they can detect large deposits of ferrous materials, but also in searching the precise location of shipwrecks and in pipelines surveys. They are more difficult to use than other instruments, yet the pieces of information they provide and more accurate and reliable. 

Sidescan sonars are a type of sonar systems that are able to create images of ocean floor (or lake or river bottoms) and they are appreciated and highly popular due to their low cost. They are also known as side-imaging sonars, single-beam echo sounder, side looking sonars, or bottom classification sonars. In addition to providing seafloor samples, and information on the type of texture in the ocean floor, they can also detect debris items that may prevent navigation or the activity of oil and gas companies and asses the condition of pipelines and cables on the sea floor and also provide accurate dimensions of the items investigated. Consequently, sidescan sonars are used in several industries, such as oil and gas industry, marine research and science, education, hydrographic agencies, coastguards. 

This piece of equipment features three components – a towfish, a cable for transmission and a processing unit. The towfish transmits and receives sounds from the surrounding ocean floor area and uses the echoes to create a “picture” of the seafloor, in which the protruding objects appear in dark and the shadows are lighter. Sidescan sonars are successful in offering accurate pictures of the investigated areas, but they cannot measure depths. 

The multi beam eco sounders are in fact sidescan sonars mounted on an array. These devices create a "swath" of soundings in order to fully cover an area. 

Portable tide gauges are other instruments used in hydrographic survey, with the purpose of measuring the sea level and tsunami detection. They can also store the results of calculations of Significant Wave Height and Full Wave Frequency. 

All this equipment cannot function unless featuring proper software applications. Companies sometimes develop their own software, in order to fulfill particular tasks.

Tags: Hydrographic Survey

(Credit: Fugro)

Fugro Nets Mubadala Energy’s Deepwater Gas Job in Asia

Fugro has secured a large contract with Mubadala Energy to deliver advanced soil…

Dramatic waves of the Atlantic Ocean taken during a research expedition. Credit: Dr Ming-Xi Yang

Bubbles May Accelerate CO2 Uptake by the Ocean

A new study provides evidence that the ocean may have absorbed as much as 15% (0.3…

Figure 1. Ocean Networks Canada’s hydrophone and Dalhousie University’s Deep Acoustic Lander are used to monitor hydrothermal vents. Brendan Smith and his Ph.D. advisor, Prof. David Barclay, used hydrophones operated by Ocean Networks Canada in the Pacific Ocean and the European Multidisciplinary Seafloor and water column Observatory in the Atlantic Ocean to monitor two vents on the seafloor. 
Photo: Ocean Networks Canada

Battery Power Management and Control

The management of DC power is one of the basic challenges in designing an autonomous ocean lander.

Credit: Nokia

The Impact of AI Traffic on Subsea Fiber Networks

Fiber optic networks provide the connectivity ubiquitous to modern society, enabling…

© Voyis

Voyis, EIVA Introduce Geo-Located Camera-Based Mapping

Voyis and EIVA, both part of the Covelya Group, announced an update to Voyis VSLAM…

© HII

HII Marks Oklahoma Submarine Construction Milestone at Newport News Shipbuilding

HII announced that its Newport News Shipbuilding division has reached a significant…

© MacArtney Underwater Technology

Mads Nipper Appointed as Chair of MacArtney Underwater Technology Board

MacArtney Underwater Technology has appointed Mads Nipper as Chair of the Board.

(Credit: NKT)

NKT Expands Swedish Cable Accessories Plant Amid Rising Demand

NKT has completed the construction of a new test hall, the expansion of production capacity…

© Inna / Adobe Stock

Ocean Geophysics, HighTide Team Up for Offshore Data Processing

Offshore wind industry suppliers Ocean Geophysics and HighTide have entered into…

A small solar-powered wave buoy casts off into the ocean.
Source: UWA

Australia Opens a Wave Data Portal

Nearly 90% of Australians live within 50 kilometers of the coast, and Australia’s…

The Glomar Explorer off Maui after the recovery mission. 
Source: Authors photograph

A Project Called Azorian: Doing the Impossible

More than fifty years ago in March 1968 the US Navy observed a massive Soviet naval…

© applied acoustics

Applied Acoustics Deploys Pyxis INS + USBL System for SEP Hydrographic

applied acoustics, a manufacturer of specialist subsea positioning and marine seismic…

Related Articles

Remote Imaging in Underwater Environments

Underwater instruments are used for remote sensing, because the earth is an aquatic planet and as much as 80% of its surface is covered by water. Moreover, there is a strong interest in knowing what lies in underwater. Underwater remote imaging…

Marine Technician Career Details

What does a marine technician do? Marine mechanics are in charge with all the electrical systems and mechanical aspects of a vessel’s engines. They must provide maintenance, inspection, routine checks, and repairs for the company’s boats or individual employers.

Subsea Oil and Gas Production

Various Aspects of Subsea Oil and Gas ProductionThere are many underwater oil and gas fields all over the world and subsea oil and gas production refers to the industry that explores, drills and develops oil and gas fields in these locations.

Remotely Operated Vehicles

History, Types and Applications of Remotely Operated Vehicles (for Undersea Use) These remotely operated vehicles are also known as ROVs and they are a subcategory of undersea vehicles, robots that can operate under water for diverse purposes.
As 2025 comes to a close, MTR explores trends for 2026 and the newest products and vessels in the maritime industry.
Read the Magazine Sponsored by

Vessel Announcements

Marine Technology Magazine Cover Nov 2025 -

Marine Technology Reporter is the world's largest audited subsea industry publication serving the offshore energy, subsea defense and scientific communities.

Subscribe
Marine Technology ENews subscription

Marine Technology ENews is the subsea industry's largest circulation and most authoritative ENews Service, delivered to your Email three times per week

Subscribe for MTR E-news